摘要:
Apparatuses and methods are disclosed for managing discovery in wireless peer-to-peer networks. Various discovery procedures may be implemented by supporting a broadcast of a plurality of discovery signals spaced apart in time by silent periods from a peer node and changing the duration of at least one of the silent periods.
摘要:
Multiple control indications are transmitted within timeslots defined for a slotted communication system. For example, a wireless node may transmit a control indication at a beginning of a timeslot and at an end of a timeslot. A control indication may comprise a resource utilization message that a node generates in an attempt reduce inference at the node that is caused by transmissions by neighboring nodes. A node also may synchronize to a received timeslot of another node based on the position of one or more control indications within the timeslot. Here, each control indication may include information that indicates the position of the control indication within the timeslot.
摘要:
Embodiments describe flow based fair scheduling in a wireless multi-hop network. The scheduling can be rate controlled multi-hop scheduling or power controlled multi-hop scheduling. The scheduling chosen is intended to provide maxmin fairness over all flows within the wireless network.
摘要:
An apparatus, method, and computer-program product are provided for wireless communication between uplink and downlink nodes via a relay. The relay is configured to simultaneously communicate with the uplink and downlink nodes on a common channel. For simultaneous communication, radio resources may be allocated to the relay to maintain orthogonality on both the uplink and downlink.
摘要:
Systems and methods are disclosed that facilitate wireless communication using resource utilization messages (RUMs), in accordance with various aspects. A RUM may be generated for a first node, such as an access point or an access terminal, to indicate that a first predetermined threshold has been met or exceeded. The RUM may be weighted to indicate a degree to which a second predetermined threshold has been exceeded. The first and/or second predetermined thresholds may be associated with various parameters associated with the node, such as latency, throughput, data rate, spectral efficiency, carrier-to-interference ratio, interference-over-thermal level, etc. The RUM may then be transmitted to one or more other nodes to indicate a level of disadvantage experienced by the first node.
摘要:
Interference management may involve the transmission of interference management messages by wireless nodes that are experiencing interference and appropriate responses by potential interferers that receive the interference management messages. Upon detection of interfering signals, a wireless node may determine whether the signals are from a synchronous interferer or an asynchronous interferer. Based on this determination, the wireless node may use different types of signals to manage the different types of interference. In some aspects, asynchronous interference management may involve backing-off in frequency and/or in time in response to interference signals. Asynchronous interference management may involve transmitting back-off beacons to clear potential interferers from a given carrier. Here, the transmission of beacons by a wireless node may be metered to facilitate fair sharing of communication resources.
摘要:
A method and apparatus for dynamic interference management is disclosed. A frequency channel is partitioned into a plurality of groups. Two or more groups are assigned weights reflecting degrees of disadvantage of a node. Each group is further partitioned into a plurality of tones. A node experiencing interference determines a group, selects a tone within the group, and transmits a wireless signal using the selected tone. A receiving node receives a plurality of tones including the selected tone, identifies active tones from the received tones, and determines a response based on the weights of the active tones.
摘要:
A wireless node configured to communicate with a remote node using a timeslot structure. The timeslot structure includes a plurality of data channels and a plurality of control channels, wherein each of the control channels comprises a plurality of control units. The wireless node is further configured to assign any one of a plurality of control messages for the data channels to any one of the control units.
摘要:
Multiple control indications are transmitted within timeslots defined for a slotted communication system. For example, a wireless node may transmit a control indication at a beginning of a timeslot and at an end of a timeslot. A control indication may comprise a resource utilization message that a node generates in an attempt reduce inference at the node that is caused by transmissions by neighboring nodes. A node also may synchronize to a received timeslot of another node based on the position of one or more control indications within the timeslot. Here, each control indication may include information that indicates the position of the control indication within the timeslot.
摘要:
A first wireless node may synchronize its timeslots with the timeslots of a second wireless node that was previously transmitting and receiving data in an asynchronous manner with respect to the timeslots of the first wireless node. By synchronizing timeslots, the wireless nodes may avoid interference that may otherwise occur if the wireless nodes operate in an asynchronous manner. A wireless node shares its timing information with other wireless nodes by repeatedly transmitting timing reference signals in conjunction with a synchronization metric that defines the relative priority of the timing reference. In the event a wireless node does not receive a GPS-based timing reference, the wireless node may synchronize to a timing reference based on the parameters of the synchronization metric of that timing reference. In the event a wireless node does not receive any timing references, the wireless node may define and advertise it's a timing reference and associated synchronization metric. To avoid synchronization race conditions, the synchronization metrics may be defined such that wireless nodes that have different timing references will advertise different synchronization metrics.