Abstract:
A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a difference between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.
Abstract:
A system includes a quench chamber configured to continuously receive a mixture of a gas and slag, and a downstream end portion coupled to the quench chamber. The quench chamber includes a quench sump configured to continuously separate the gas from the slag in the mixture via a quench liquid. The downstream end portion is configured to continuously convey a slag slurry to a depressurization system. The downstream end portion includes a cooling system configured to directly cool the slag slurry with a cooling fluid, and the slag slurry includes the separated slag and at least a portion of the cooling fluid
Abstract:
A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a difference between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.
Abstract:
A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.
Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
The disclosed embodiments relate to systems and methods for heating a slurry to increase a solids concentration of the slurry while maintaining the viscosity of the slurry below a threshold viscosity. For example, in one embodiment, a system includes a fuel slurry preparation system having a slurry tank configured to hold a fuel slurry, the fuel slurry having a solid fuel and a liquid. The fuel slurry preparation system also includes a heat source and a controller configured to control the heat source to heat the fuel slurry to decrease a viscosity of the slurry below a threshold viscosity.
Abstract:
A method for monitoring functionality of a seal assembly within an injector feed assembly is described. The method includes providing a buffer fluid to the seal assembly, measuring at least one of a pressure and a flow rate of the buffer fluid, and determining a functionality of the seal assembly based at least partially on the at least one of a pressure and a flow rate of the buffer fluid.
Abstract:
A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.
Abstract:
A method for monitoring functionality of a seal assembly within an injector feed assembly is described. The method includes providing a buffer fluid to the seal assembly, measuring at least one of a pressure and a flow rate of the buffer fluid, and determining a functionality of the seal assembly based at least partially on the at least one of a pressure and a flow rate of the buffer fluid.
Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.