摘要:
An ultra-large scale integrated circuit semiconductor device having a laterally non-uniform channel doping profile is manufactured by using a Group IV element implant at an implant angle of between 0° to 60° from the vertical to create interstitials in a doped silicon substrate under the gate of the semiconductor device. After creation of the interstitials, a channel doping implantation is performed using a Group III or Group V element which is also implanted at an implant angle of between 0° to 60° from the vertical. A rapid thermal anneal is then used to drive the dopant laterally into the channel of the semiconductor device by transient enhanced diffusion.
摘要:
An ultra-large scale integrated circuit semiconductor device having a laterally non-uniform channel doping profile is manufactured by using a Group IV element implant at an implant angle of between 0° to 60° from the vertical to create interstitials in a doped silicon substrate under the gate of the semiconductor device. After creation of the interstitials, a channel doping implantation is performed using a Group III or Group V element which is also implanted at an implant angle of between 0° to 60° from the vertical. A rapid thermal anneal is then used to drive the dopant laterally into the channel of the semiconductor device by transient enhanced diffusion.
摘要:
A high-voltage transistor device comprises a spiral resistive field plate over a first well region between a drain region and a source region of the high-voltage transistor device, wherein the spiral resistive field plate is separated from the first well region by a first isolation layer, and is coupled between the drain region and the source region. The high-voltage transistor device further comprises a plurality of first field plates over the spiral resistive field plate with each first field plate covering one or more segments of the spiral resistive field plate, wherein the plurality of first field plates are isolated from the spiral resistive field plate by a first dielectric layer, and wherein the plurality of first field plates are isolated from each other, and a starting first field plate is connected to the source region.
摘要:
An improved power device with a self-aligned suicide and a method for fabricating the device are disclosed. An example power device is a vertical power device that includes contacts formed on gate and body contact regions by an at least substantially self-aligned silicidation (e.g., salicide) process. The example device may also include one or more sidewall spacers that are each at least substantially aligned between edges of the gate region and the body contact region. The body contact region may also be implanted into the device in at least substantial self-alignment to the sidewall spacer. The method may also include an at least substantially self-aligned silicon etch.
摘要:
Voltage converters with integrated low power leaker device and associated methods are disclosed herein. In one embodiment, a voltage converter includes a switch configured to convert a first electrical signal into a second electrical signal different than the first electrical signal. The voltage converter also includes a controller operatively coupled to the switch and a leaker device electrically coupled to the controller. The controller is configured to control the on and off gates of the switch, and the leaker device is configured to deliver power to the controller. The leaker device and the switch are formed on a first semiconductor substrate, and the controller is formed on second semiconductor substrate separate from the first semiconductor substrate.
摘要:
An integrated semiconductor logic gate apparatus having optimized asymmetric channel regions and method for fabricating the apparatus is disclosed. The fabrication process includes ion-implanting the drain side of the channel to produce asymmetric channels on the gate transistors by using a criss-cross form of ion implantation. The criss-cross ion-implantation is performed after formation of the multiple gate stacks and is facilitated by a patterned photoresist mask that leaves an open, unprotected region above adjacent gate stacks through which the ion-implantation is performed. The criss-cross ion-implantation includes two tilt angles that are determined by tangent expressions that factor the height of the photoresist mask, the width of the unprotected opening over pairs of gate stacks and the width of the channel regions, including a distance relating to the point where the source/drain potential barrier is a minimum beneath the overlying gate stack. Adjacent gate stacks can have asymmetric channels with the same dopant concentration, or may be fabricated having different concentrations by varying the height of the photoresist mask to achieve a wider ion-implantation beam and thus form a higher dopant concentration on the target channel region. The optimized gates with higher dopant concentration improves off-state leakage current (10−8 amps/micron), but reduce the gate speed. The gates may also be optimized for gate speed and power consumption by producing uniformly doped asymmetric gates (20-50 pico-second fall time delays being achievable).
摘要:
A totally self-aligned transistor with a tungsten gate. A single mask is used to align the source, drain, gate and isolation areas. Overlay error is greatly reduced by the use of a single mask for these regions. A mid-gap electrode is also self-aligned to the transistor. The electrode is preferably formed from tungsten metal.
摘要:
A high-voltage transistor device comprises a spiral resistive field plate over a first well region between a drain region and a source region of the high-voltage transistor device, wherein the spiral resistive field plate is separated from the first well region by a first isolation layer, and is coupled between the drain region and the source region. The high-voltage transistor device further comprises a plurality of first field plates over the spiral resistive field plate with each first field plate covering one or more segments of the spiral resistive field plate, wherein the plurality of first field plates are isolated from the spiral resistive field plate by a first dielectric layer, and wherein the plurality of first field plates are isolated from each other, and a starting first field plate is connected to the source region.
摘要:
The present disclosure discloses a lateral high-voltage transistor and associated method for making the same. The lateral high-voltage transistor comprises a semiconductor layer of a first conductivity type; a source region of a second conductivity type opposite to the first conductivity type in the semiconductor layer; a drain region of the second conductivity type in the semiconductor layer separated from the source region; a first isolation layer atop the semiconductor layer between the source region and the drain region; a first well region of the second conductivity type surrounding the drain region, extending towards the source region and separated from the source region; a second well region of the first conductivity type surrounding the source region; a gate positioned atop the first isolation layer above the second well region and an adjacent portion of the first well region; and a first buried layer of the first conductivity type under the first well region adjacent to the source region side of the lateral high-voltage transistor. A JFET is formed using the gate as a JFET top gate and the first buried layer as a JFET bottom gate.
摘要:
According to one embodiment, a self-aligned trench structure junction gate field-effect transistor (JFET) includes a silicon substrate, two or more trenches having a P-type polysilicon gate region near a bottom portion of the trench and an interlayer dielectric layer (ILDL) above the P-type polysilicon gate region, a channel region separating each trench including epitaxial silicon, an N+ source region above the channel region extending between a top of each trench, and a source metal above the N+ source region. In another embodiment, a self-aligned trench structure JFET includes a silicon substrate, two or more trenches having an N-type polysilicon gate region near a bottom portion of the trench and an ILDL above the N-type polysilicon gate region, a channel region separating each trench including epitaxial silicon, a P+ source region above the channel region extending between a top of each trench, and a source metal above the P+ source region.