摘要:
A method for producing a semiconductor wafer includes pulling a single crystal of semiconductor material, slicing a semiconductor wafer from the single crystal and polishing the semiconductor wafer with the polishing pad and polishing agent. The polishing agent is free of solid materials having abrasive action and the polishing pad contains fixedly bonded solid materials with abrasive action. During polishing the polishing agent is supplied in a gap between the semiconductor wafer and polishing pad. The polishing agent has a pH value in a range of 9.5 to 12.5.
摘要:
A method for producing a semiconductor wafer sliced from a single crystal includes rounding an edge using a grinding disk containing abrasives with an average grain size of 20.0-60.0 μm. A first simultaneous double-side material-removing process is performed wherein the semiconductor wafers are processed between two rotating ring-shaped working disks, each working disk having a working layer containing abrasives having an average grain size of 5.0-20.0 μm, wherein the semiconductor wafer is placed in a cutout in one of a plurality of carriers rotatable by a rolling apparatus such that the semiconductor wafer lies in a freely movable manner in the carrier and the wafer is movable on a cycloidal trajectory. A second simultaneous double-side material-removing process is performed including processing the semiconductor wafers between two rotating ring-shaped working disks, each working disk having a working layer containing abrasives having an average grain size of 0.5-15.0 μm.
摘要:
Semiconductor material substrates are polished by a method including at least one polishing step A by means of which the substrate is polished on a polishing pad containing an abrasive material bonded in the polishing pad and a polishing agent solution is introduced between the substrate and the polishing pad during the polishing step; and at least one polishing step B by means of which the substrate is polished on a polishing pad containing an abrasive material-containing polishing pad and wherein a polishing agent slurry containing unbonded abrasive material is introduced between the substrate and the polishing pad during the polishing step.
摘要:
Single-sided polishing of semiconductor wafers provided with a relaxed Si1-xGex layer involves polishing of a multiplicity of wafers in a plurality of polishing runs, a polishing run having at least one polishing step, at least one of the multiplicity of wafers obtained with a polished Si1-xGex layer at the end of each polishing run; moving the wafer during the polishing step over a rotating polishing plate provided with a polishing cloth while applying polishing pressure, and supplying polishing agent between the polishing cloth and the semiconductor wafer, the polishing agent containing an alkaline component and a component that dissolves germanium. Semiconductor wafer having a Si1-xGex layer substantially free of defects and haze is produced.
摘要翻译:设置有松弛的Si 1-x N x层的半导体晶片的单面抛光涉及在多个抛光运行中抛光多个晶片,抛光运行具有 至少一个研磨步骤,在每个抛光运行结束时用抛光的Si 1-x Ge x N层获得的多个晶片中的至少一个; 在抛光步骤期间将晶片在设置有抛光布的旋转抛光板上移动,同时施加抛光压力,并在抛光布和半导体晶片之间提供抛光剂,抛光剂含有碱性成分和溶解锗的成分。 产生具有基本上没有缺陷和雾度的Si 1-x N z O x S层的半导体晶片。
摘要:
Semiconductor material substrates are polished by a method including at least one polishing step A by means of which the substrate is polished on a polishing pad containing an abrasive material bonded in the polishing pad and a polishing agent solution is introduced between the substrate and the polishing pad during the polishing step; and at least one polishing step B by means of which the substrate is polished on a polishing pad containing an abrasive material-containing polishing pad and wherein a polishing agent slurry containing unbonded abrasive material is introduced between the substrate and the polishing pad during the polishing step.
摘要:
A method for the simultaneous material-removing processing of both sides of at least three semiconductor wafers includes providing a double-side processing apparatus including two rotating ring-shaped working disks and a rolling apparatus. The carriers are arranged in the double-side processing apparatus and the openings are disposed in the carriers so as to satisfy the inequality: R/e·sin(π/N*)−r/e−1≦1.2 where N* denotes a ratio of the round angle and an angle at which adjacent carriers are inserted into the rolling apparatus with the greatest distance with respect to one another, r denotes a radius of each opening for receiving a respective semiconductor wafer, e denotes a radius of a pitch circle around a midpoint of the carrier on which the opening is arranged, and R denotes a radius of the pitch circle on which the carriers move between the working disks by means of the rolling apparatus.
摘要:
A method for simultaneous double-side material-removing processing of at least three workpieces includes disposing the workpieces in a working gap between rotating upper and lower working disks of a double-side processing apparatus. The workpieces lie in freely movable fashion in respective openings in a guide cage and are moved under pressure in the working gap using the guide cage. Upon attaining a preselected target thickness of the workpieces, a deceleration process is initiated that includes reducing an angular velocity ωi(t) of a respective drive i of each of the upper working disk, lower working disk and guide cage to a standstill. The reducing is carried out such that ratios of the angular velocities ωi(t) with respect to one another as a function of time t deviate by no more than 10% from initial ratios of the angular velocities ωi(t) corresponding to when the preselected target thickness was attained.
摘要:
An insert carrier is configured to receive at least one semiconductor wafer for double-side processing of the wafer between two working disks of a lapping, grinding or polishing process. The insert carrier includes a core of a first material that has a first surface and a second surface, and at least one opening configured to receive a semiconductor wafer. A coating at least partially covers the first and second surfaces of the core. The coating includes a surface remote from the core that includes a structuring including elevations and depressions. A correlation length of the elevations and depressions is in a range of 0.5 mm to 25 mm and an aspect ratio of the structuring is in a range of 0.0004 to 0.4.
摘要:
The invention relates to a process for producing a semiconductor wafer by double-side grinding of the semiconductor wafer, in which the semiconductor wafer is simultaneously ground on both sides, first by rough-grinding and then by finish-grinding, using a grinding tool. The semiconductor wafer, between the rough-grinding and the finish-grinding, remains positioned in the grinding machine, and the grinding tool continues to apply a substantially constant load during the transition from rough-grinding to finish-grinding. The invention also relates to an apparatus for carrying out the process and to a semiconductor wafer having a local flatness value on a front surface of less than 16 nm in a measurement window of 2 mm×2 mm area and of less than 40 nm in a measurement window of 10 mm×10 mm area.
摘要:
A means for removing a semiconductor wafer from a flat substrate uses a device for removing a semiconductor wafer from a polishing cloth of a double side polishing machine. The method has a liquid being pressed through the substrate against the semiconductor wafer lying on the substrate, such that the semiconductor wafer is lifted up from the substrate by the action of the liquid. Then the wafer is picked up by a pick-up device.