摘要:
LED based illumination modules are realized that are visually color matched to light sources not based on LEDs based on visually matched color spaces. A visually matched color space is employed to both instrumentally and visually match an LED based light source with a light source not based on LEDs. In one aspect, an LED based illumination module is realized to achieve a target color point in a visually matched color space within a predetermined tolerance. In another aspect, an LED based illumination module is realized to visually match a light source not based on LEDs. A target color point in the CIE 1931 XYZ color space is derived based at least in part on the spectrum of the visually matched LED based illumination module. LED based illumination modules visually matched to light sources not based on LEDs are realized based on the derived target color point.
摘要:
An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
摘要:
An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
摘要:
LED based illumination modules are realized that are visually color matched to light sources not based on LEDs based on visually matched color spaces. A visually matched color space is employed to both instrumentally and visually match an LED based light source with a light source not based on LEDs. In one aspect, an LED based illumination module is realized to achieve a target color point in a visually matched color space within a predetermined tolerance. In another aspect, an LED based illumination module is realized to visually match a light source not based on LEDs. A target color point in the CIE 1931 XYZ color space is derived based at least in part on the spectrum of the visually matched LED based illumination module. LED based illumination modules visually matched to light sources not based on LEDs are realized based on the derived target color point.
摘要:
An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
摘要:
An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
摘要:
An electrical interface module (EIM) is provided between an LED illumination device and a light fixture. The EIM includes an arrangement of contacts that are adapted to be coupled to an LED illumination device and a second arrangement of contacts that are adapted to be coupled to the light fixture and may include a power converter. Additionally, an LED selection module may be included to selectively turn on or off LEDs. A communication port may be included to transmit information associated with the LED illumination device, such as identification, indication of lifetime, flux, etc. The lifetime of the LED illumination device may be measured and communicated, e.g., by an RF signal, IR signal, wired signal or by controlling the light output of the LED illumination device. An optic that is replaceably mounted to the LED illumination device may include, e.g., a flux sensor that is connected to the electrical interface.
摘要:
An illumination module includes a color conversion cavity with a first interior surface having a first wavelength converting material and a second interior surface having a second wavelength converting material. A first LED is configured to receive a first current and to emit light that preferentially illuminates the first interior surface. A second LED is configured to receive a second current and emit light that preferentially illuminates the second interior surface. The first current and the second current are selectable to achieve a range of correlated color temperature (CCT) of light output by the LED based illumination device.
摘要:
An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module includes a reflective mask cover plate disposed over the LEDs. The reflective mask includes a patterned reflective layer with an opening area aligned with the active die area of the LEDs. The reflective mask may be a patterned reflective layer disposed between the plurality of LEDs and a lens element, wherein a void in the patterned reflective layer is filled with a material that mechanically and optically couples the plurality of LEDs and the lens element. The illumination module may include a color conversion cavity that envelopes a lens element that may include a dichroic filter. The lens element may have different surface profiles over different groups of LEDs.
摘要:
An illumination module includes a color conversion cavity with multiple interior surfaces, such as sidewalls and an output window. A shaped reflector is disposed above a mounting board upon which are mounted LEDs. The shaped reflector includes a first plurality of reflective surfaces that preferentially direct light emitted from a first LED to a first interior surface of the color conversion cavity and a second plurality of reflective surfaces that preferentially direct light emitted from a second LED to a second interior surface. The illumination module may further include a second color conversion cavity.