摘要:
A particle beam microscope comprises a magnetic lens 3 having an optical axis 53 and a pole piece 21. An object 5 to be examined is mounted at a point of intersection 51 between an optical axis 53 and the object plane 19. First and second X-ray detectors 33 have first and second radiation-sensitive substrates 35 arranged such that a first elevation angle β1 between a first straight line 551 extending through the point of intersection 51 and a center of the first substrate 351 and the object plane 19 differs from a second elevation angle β2 between a second straight line 552 extending through the point of intersection 51 and a center of the second substrate 352 and the object plane 19 by more than 14°.
摘要:
A particle beam microscope comprises a magnetic lens 3 having an optical axis 53 and a pole piece 21. An object 5 to be examined is mounted at a point of intersection 51 between an optical axis 53 and the object plane 19. First and second X-ray detectors 33 have first and second radiation-sensitive substrates 35 arranged such that a first elevation angle β1 between a first straight line 551 extending through the point of intersection 51 and a center of the first substrate 351 and the object plane 19 differs from a second elevation angle β2 between a second straight line 552 extending through the point of intersection 51 and a center of the second substrate 352 and the object plane 19 by more than 14°.
摘要:
A particle beam microscope comprises a magnetic lens 3 having an optical axis 53 and a pole piece 21. An object 5 to be examined is mounted at a point of intersection 51 between an optical axis 53 and the object plane 19. First and second X-ray detectors 33 have first and second radiation-sensitive substrates 35 arranged such that a first elevation angle β1 between a first straight line 551 extending through the point of intersection 51 and a centre of the first substrate 351 and the object plane 19 differs from a second elevation angle β2 between a second straight line 552 extending through the point of intersection 51 and a centre of the second substrate 352 and the object plane 19 by more than 14°.
摘要:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
摘要:
The invention is directed to a method for illuminating an object with a focused electron beam as well as to an electron-optical illuminating apparatus therefor. The crossover of an electron source is imaged, greatly demagnified, into the object plane via four imaging stages. The two first condenser stages define a zoom system. The cross section of the crossover image in the input image plane of the third condenser stage can be varied by varying the corresponding lens excitation. The third condenser stage images the crossover image from the input image plane into the input image plane of the objective. A multiple diaphragm is mounted between the third condenser stage and the input image plane of the objective. This multiple diaphragm has several apertures which are, in part, off-axis. The electron beam can be deflected by magnetic deflecting systems in such a manner that only the electron beam, which is transmitted through one diaphragm aperture of the multiple diaphragm, contributes an amount to the illumination of the object. In this way, the aperture of the illuminating beam component can be varied independently of the imaging scale with which the crossover is imaged on the object.
摘要:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
摘要:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
摘要:
An electron beam device has an electron gun for generating an electron beam, an objective lens for focusing the electron beam on an object and at least one detector for detecting electrons emitted by the object or electrons backscattered by the object. Detection of electrons emitted by or backscattered by an object may be simplified and improved using quadrupole devices and certain configurations of these devices provided in the electron beam device.
摘要:
The present invention relates to a method for electron beam lithography that consists of a combination of electron beam projection lithography and electron beam writing. In a first step, the exposure of the substrate takes place by imaging of a mask. In a second step, structures not present on the mask are written on the substrate by electron beam writing. The invention furthermore relates to an electron-optical lithography system that can be used both for projection lithography and for electron beam writing. The system has a projective system by means of which a mask plane can be imaged on a reduced scale in a substrate plane. The system furthermore has an electron-optical illumination system by means of which selectively either a large field in the mask plane can be illuminated or the electron beam can be focused in the mask plane or can be shaped to a desired beam profile.
摘要:
A phase contrast electron microscope has an objective with a back focal plane, a first diffraction lens, which images the back focal plane of the objective magnified into a diffraction intermediate image plane, a second diffraction lens whose principal plane is mounted in the proximity of the diffraction intermediate image plane and a phase-shifting element which is mounted in or in the proximity of the diffraction intermediate image plane. Also, a phase contrast electron microscope has an objective having a back focal plane, a first diffraction lens, a first phase-shifting element and a second phase-shifting element which is mounted in or in the proximity of the diffraction intermediate image plane. The first diffraction lens images the back focal plane of the objective magnified into a diffraction intermediate image plane and the first phase-shifting element is mounted in the back focal plane of the objective.