摘要:
A method for manufacturing a semiconductor structure is provided which includes the following operations: supplying a crystalline semiconductor substrate, providing a porous region adjacent to a surface of the semiconductor substrate, introducing a dopant into the porous region from the surface, and thermally recrystallizing the porous region into a crystalline doping region of the semiconductor substrate whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate. A corresponding semiconductor structure is likewise provided.
摘要:
A method for manufacturing a semiconductor structure is provided which includes the following operations: supplying a crystalline semiconductor substrate, providing a porous region adjacent to a surface of the semiconductor substrate, introducing a dopant into the porous region from the surface, and thermally recrystallizing the porous region into a crystalline doping region of the semiconductor substrate whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate. A corresponding semiconductor structure is likewise provided.
摘要:
A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
摘要:
A method for manufacturing a semiconductor structure is provided which includes the following steps: a crystalline semiconductor substrate (1) is supplied; a porous region (10) is provided adjacent to a surface (OF) of the semiconductor substrate (1); a dopant (12) is introduced into the porous region (10) from the surface (OF); and the porous region (10) is thermally recrystallized into a crystalline doping region (10′) of the semiconductor substrate (1) whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate (1). A corresponding semiconductor structure is likewise provided.
摘要:
A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
摘要:
Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions. This lattice-like structure extends preferably from the surface of the semiconductor into the depth. The etch mask for creating the depressions may be removed, optionally prior to or subsequent to the anodization. A temperature treatment is carried out for creating the hollow space and the membrane in the semiconductor substrate which forms the sensor element. During this process, the hollow space is created from the at least one area that has been rendered porous beneath a depression and the membrane above the hollow space is created from the lattice-like structure by rearranging the semiconductor material.
摘要:
Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions. This lattice-like structure extends preferably from the surface of the semiconductor into the depth. The etch mask for creating the depressions may be removed, optionally prior to or subsequent to the anodization. A temperature treatment is carried out for creating the hollow space and the membrane in the semiconductor substrate which forms the sensor element. During this process, the hollow space is created from the at least one area that has been rendered porous beneath a depression and the membrane above the hollow space is created from the lattice-like structure by rearranging the semiconductor material.
摘要:
A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression. A passivation process is then carried out in that first phase, in which the concavity produced in the walls of the depression by the first trenching step is covered with a passivation material. The first trenching step and the first passivation process may be carried out repeatedly in alternating succession within the first phase, with the result that a typical corrugation is obtained on the walls of the depression so produced. In the second phase of the trench etching process, the cavity is produced through the at least one access hole produced by the depression, by carrying out a second trenching step of a predetermined second time period that is distinctly longer in comparison with the first time period.
摘要:
A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression. A passivation process is then carried out in that first phase, in which the concavity produced in the walls of the depression by the first trenching step is covered with a passivation material. The first trenching step and the first passivation process may be carried out repeatedly in alternating succession within the first phase, with the result that a typical corrugation is obtained on the walls of the depression so produced. In the second phase of the trench etching process, the cavity is produced through the at least one access hole produced by the depression, by carrying out a second trenching step of a predetermined second time period that is distinctly longer in comparison with the first time period.
摘要:
A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.