摘要:
An embodiment of the instant invention is a method of forming a electrically conductive structure insulatively disposed from a second structure, the method comprising: providing the second structure; forming the electrically conductive structure of a material (step 118 of FIG. 1) that remains substantially conductive after it is oxidized; forming an electrically insulative layer (step 116 of FIG. 1) between the second structure and the conductive structure; and oxidizing the conductive structure by subjecting it to an ozone containing atmosphere for a duration of time and at a first temperature.
摘要:
A method of forming a crystalline silicon well over a perovskite barrier layer, preferably for use in formation of a resonant tunneling diode. A silicon substrate (1) is provided of predetermined crystallographic orientation. A layer of crystallographic perovskite material (5) is formed over the silicon substrate and substantially matched to the lattice constant of the silicon substrate. A layer of crystallographic silicon (7) is formed over the perovskite layer substantially matched to the lattice constant of the perovskite layer. The perovskite layer is formed by the steps of placing the silicon substrate in a chamber and then evaporating a layer of barium strontium oxide (3) thereon with a thickness of from about three to about six Angstroms and then evaporating a layer of calcium strontium titanate (5) thereon having a thickness of from about six to about 25 Angstroms thereon in the case of a tunneling diode. A second layer of silicon oxide (9) is provided on the layer of silicon remote from the perovskite layer.
摘要:
A method of forming a crystalline silicon well over a perovskite barrier layer, preferably for use in formation of a resonant tunneling diode. A silicon substrate (1) is provided of predetermined crystallographic orientation. A layer of crystallographic perovskite material (5) is formed over the silicon substrate and substantially matched to the lattice constant of the silicon substrate. A layer of crystallographic silicon (7) is formed over the perovskite layer substantially matched to the lattice constant of the perovskite layer. The perovskite layer is formed by the steps of placing the silicon substrate in a chamber and then evaporating a layer of barium strontium oxide (3) thereon with a thickness of from about three to about six Angstroms and then evaporating a layer of calcium strontium titanate (5) thereon having a thickness of from about six to about 25 Angstroms thereon in the case of a tunneling diode. A second layer of silicon oxide (9) is provided on the layer of silicon remote from the perovskite layer.
摘要:
An anode plate (10) for use in a field emission flat panel display device (8) comprises a transparent substrate (26) having a plurality of spaced-apart, electrically conductive regions (28) which form the anode electrode of the display device (8). The conductive regions (28) are covered by a luminescent material (24). A getter material (29) is deposited on the substrate (26) and between the conductive regions (28) of the anode plate (10). The getter material (29) is preferably an electrically nonconductive, high porosity, and low density material, such as an aerogel or xerogel. Methods of fabricating the getter material (29) on the anode plate (10) are disclosed.
摘要:
We disclose a method for analyzing the composition of a microscopic particle resting on a first sample surface. The method comprises positioning a micro-manipulator probe near the particle; attaching the particle to the probe; moving the probe and the attached particle away from the first sample surface; positioning the particle on a second sample surface; and, analyzing the composition of the particle on the second sample surface by energy-dispersive X-ray analysis or detection of Auger electrons. The second surface has a reduced or non-interfering background signal during analysis relative to the background signal of the first surface. We also disclose methods for adjusting the electrostatic forces and DC potentials between the probe, the particle, and the sample surfaces to effect removal of the particle, and its transfer and relocation to the second sample surface.