Method of forming metal oxide gate structures and capacitor electrodes
    1.
    发明授权
    Method of forming metal oxide gate structures and capacitor electrodes 有权
    形成金属氧化物栅极结构和电容器电极的方法

    公开(公告)号:US06897105B1

    公开(公告)日:2005-05-24

    申请号:US09396642

    申请日:1999-09-15

    摘要: An embodiment of the instant invention is a method of forming a electrically conductive structure insulatively disposed from a second structure, the method comprising: providing the second structure; forming the electrically conductive structure of a material (step 118 of FIG. 1) that remains substantially conductive after it is oxidized; forming an electrically insulative layer (step 116 of FIG. 1) between the second structure and the conductive structure; and oxidizing the conductive structure by subjecting it to an ozone containing atmosphere for a duration of time and at a first temperature.

    摘要翻译: 本发明的一个实施例是形成从第二结构绝对地设置的导电结构的方法,所述方法包括:提供所述第二结构; 形成材料的导电结构(图1的步骤118),其在氧化之后保持基本导电; 在第二结构和导电结构之间形成电绝缘层(图1的步骤116); 以及通过使其在含臭氧的气氛中持续一段时间并处于第一温度来氧化所述导电结构。

    Method for growing high-quality crystalline Si quantum wells for RTD
structures
    2.
    发明授权
    Method for growing high-quality crystalline Si quantum wells for RTD structures 有权
    用于生长RTD结构的高品质晶体Si量子阱的方法

    公开(公告)号:US6069368A

    公开(公告)日:2000-05-30

    申请号:US211948

    申请日:1998-12-15

    IPC分类号: H01L21/20 H01L29/88 H01L29/06

    摘要: A method of forming a crystalline silicon well over a perovskite barrier layer, preferably for use in formation of a resonant tunneling diode. A silicon substrate (1) is provided of predetermined crystallographic orientation. A layer of crystallographic perovskite material (5) is formed over the silicon substrate and substantially matched to the lattice constant of the silicon substrate. A layer of crystallographic silicon (7) is formed over the perovskite layer substantially matched to the lattice constant of the perovskite layer. The perovskite layer is formed by the steps of placing the silicon substrate in a chamber and then evaporating a layer of barium strontium oxide (3) thereon with a thickness of from about three to about six Angstroms and then evaporating a layer of calcium strontium titanate (5) thereon having a thickness of from about six to about 25 Angstroms thereon in the case of a tunneling diode. A second layer of silicon oxide (9) is provided on the layer of silicon remote from the perovskite layer.

    摘要翻译: 在钙钛矿阻挡层上形成晶体硅的方法,优选用于形成谐振隧穿二极管。 硅基板(1)具有预定的晶体取向。 在硅衬底上形成一层晶体钙钛矿材料(5),并且基本上与硅衬底的晶格常数匹配。 在与钙钛矿层的晶格常数基本匹配的钙钛矿层上形成一层结晶硅(7)。 钙钛矿层通过以下步骤形成:将硅衬底放置在室中,然后在其上蒸发厚度约3至约6埃的一层氧化钡钡(3),然后蒸发一层钛酸锶钙( 在其上,在隧道二极管的情况下其上具有约6至约25埃的厚度。 第二层氧化硅(9)设置在远离钙钛矿层的硅层上。

    Method of growing high-quality crystalline silicon quantum wells for RTD structures
    3.
    发明授权
    Method of growing high-quality crystalline silicon quantum wells for RTD structures 有权
    生长用于RTD结构的高品质晶体硅量子阱的方法

    公开(公告)号:US06248621B1

    公开(公告)日:2001-06-19

    申请号:US09421011

    申请日:1999-10-20

    IPC分类号: H01L218234

    摘要: A method of forming a crystalline silicon well over a perovskite barrier layer, preferably for use in formation of a resonant tunneling diode. A silicon substrate (1) is provided of predetermined crystallographic orientation. A layer of crystallographic perovskite material (5) is formed over the silicon substrate and substantially matched to the lattice constant of the silicon substrate. A layer of crystallographic silicon (7) is formed over the perovskite layer substantially matched to the lattice constant of the perovskite layer. The perovskite layer is formed by the steps of placing the silicon substrate in a chamber and then evaporating a layer of barium strontium oxide (3) thereon with a thickness of from about three to about six Angstroms and then evaporating a layer of calcium strontium titanate (5) thereon having a thickness of from about six to about 25 Angstroms thereon in the case of a tunneling diode. A second layer of silicon oxide (9) is provided on the layer of silicon remote from the perovskite layer.

    摘要翻译: 在钙钛矿阻挡层上形成晶体硅的方法,优选用于形成谐振隧穿二极管。 硅基板(1)具有预定的晶体取向。 在硅衬底上形成一层晶体钙钛矿材料(5),并且基本上与硅衬底的晶格常数匹配。 在与钙钛矿层的晶格常数基本匹配的钙钛矿层上形成一层结晶硅(7)。 钙钛矿层通过以下步骤形成:将硅衬底放置在室中,然后在其上蒸发厚度约3至约6埃的一层氧化钡钡(3),然后蒸发一层钛酸锶钙( 在其上,在隧道二极管的情况下其上具有约6至约25埃的厚度。 第二层氧化硅(9)设置在远离钙钛矿层的硅层上。

    Anode plate for flat panel display having integrated getter
    4.
    发明授权
    Anode plate for flat panel display having integrated getter 失效
    具有集成吸气剂的平板显示器的阳极板

    公开(公告)号:US5689151A

    公开(公告)日:1997-11-18

    申请号:US535506

    申请日:1995-09-28

    摘要: An anode plate (10) for use in a field emission flat panel display device (8) comprises a transparent substrate (26) having a plurality of spaced-apart, electrically conductive regions (28) which form the anode electrode of the display device (8). The conductive regions (28) are covered by a luminescent material (24). A getter material (29) is deposited on the substrate (26) and between the conductive regions (28) of the anode plate (10). The getter material (29) is preferably an electrically nonconductive, high porosity, and low density material, such as an aerogel or xerogel. Methods of fabricating the getter material (29) on the anode plate (10) are disclosed.

    摘要翻译: 一种用于场致发射平板显示装置(8)的阳极板(10)包括具有形成显示装置的阳极电极的多个间隔开的导电区域(28)的透明基板(26) 8)。 导电区域(28)被发光材料(24)覆盖。 吸气材料(29)沉积在衬底(26)上并在阳极板(10)的导电区域(28)之间。 吸气材料(29)优选是不导电,高孔隙率和低密度材料,例如气凝胶或干凝胶。 公开了在阳极板(10)上制造吸气材料(29)的方法。

    Method for manipulating microscopic particles and analyzing

    公开(公告)号:US06777674B2

    公开(公告)日:2004-08-17

    申请号:US10252659

    申请日:2002-09-23

    IPC分类号: G01N2322

    摘要: We disclose a method for analyzing the composition of a microscopic particle resting on a first sample surface. The method comprises positioning a micro-manipulator probe near the particle; attaching the particle to the probe; moving the probe and the attached particle away from the first sample surface; positioning the particle on a second sample surface; and, analyzing the composition of the particle on the second sample surface by energy-dispersive X-ray analysis or detection of Auger electrons. The second surface has a reduced or non-interfering background signal during analysis relative to the background signal of the first surface. We also disclose methods for adjusting the electrostatic forces and DC potentials between the probe, the particle, and the sample surfaces to effect removal of the particle, and its transfer and relocation to the second sample surface.