Abstract:
A method and a system for achieving a self-adaptive surround sound. The method comprises: recognizing specific positions of a room and a user in the room by using an object recognition technology, capturing focusing images of recognized objects by controlling a camera using a focusing control technology, and recording corresponding focusing parameters (S110); calculating position information of the room relative to the camera and position information of the user relative to the camera according to the images and the parameters (S120); calculating sound beams that can achieve the surround sound at the position of the user in said room according to aforesaid calculated position information of the room and the user (S130); obtaining parameters of a filter group according to the calculated sound beams, and adjusting the filter group of a loudspeaker array according to the parameters (S140); and playing an audio signal via the loudspeaker array after the audio signal is filtered by the filter group that has been adjusted according to the parameters to form surround sound at the position of the user in the room (S150).
Abstract:
A method and a system for achieving a self-adaptive surround sound. The method comprises: recognizing specific positions of a room and a user in the room by using an object recognition technology, capturing focusing images of recognized objects by controlling a camera using a focusing control technology, and recording corresponding focusing parameters (S110); calculating position information of the room relative to the camera and position information of the user relative to the camera according to the images and the parameters (S120); calculating sound beams that can achieve the surround sound at the position of the user in said room according to aforesaid calculated position information of the room and the user (S130); obtaining parameters of a filter group according to the calculated sound beams, and adjusting the filter group of a loudspeaker array according to the parameters (S140); and playing an audio signal via the loudspeaker array after the audio signal is filtered by the filter group that has been adjusted according to the parameters to form surround sound at the position of the user in the room (S150).
Abstract:
The present invention discloses a heart rate detection method used in an earphone and an earphone capable of detecting heart rate. The method comprises: providing a cavity inside the earphone, and installing a microphone in the cavity; providing an acceleration sensor in the earphone; performing self-adaptive filtering process on signals collected by the acceleration sensor, and obtaining estimated signals of the signals generated by body movement of a wearer in the signals collected by the microphone; subtracting the estimated signals from the signals collected by the microphone to obtain signals related to heart rate; and detecting heart rate according to the signals related to heart rate. The technical scheme of the invention adopts an enclosed cavity to place the microphone to reduce interference of external noises and reinforce signal information collected by the microphone. By performing self-adaptive filtering on signals collected by the acceleration sensor to obtain estimated signals, subtracting the estimated signals from the signals collected by the microphone, and then detecting the heart rate, the influence of the body movement of the wearer on heart rate detection can be eliminated.
Abstract:
A noise-reduction control method includes performing frequency-domain weighting and temporal-domain weighting to a noise signal collected at current time to obtain a weighted energy. Judging whether active noise-reduction control is needed based on the weighted energy; calculating an energy value of a first sub-band and an energy value of a second sub-band of the noise signal collected by the feedforward microphone at the current time, wherein the first sub-band and the second sub-band are determined based on a feedforward noise-reduction curve and a feedback noise-reduction curve of the earphone, respectively. Determining a feedforward noise-reduction amount and a feedback noise-reduction amount based on the energy value of the first sub-band and the energy value of the second sub-band, respectively. Controlling the earphone to perform feedforward noise reduction based on the feedforward noise-reduction amount, and controlling the earphone to perform feedback noise reduction based on the feedback noise-reduction amount.
Abstract:
The invention discloses a headset communication method under a strong-noise environment and a headset. The method comprises: using earplugs to reduce medium and high frequency noises entering an ear canal, using an external connection cavity in parallel connection with the ear canal to divert medium and low frequency noises; using an internal microphone to pick up the sound in the ear canal and an environmental noise signal entering the ear canal, using an external microphone to pick up the environmental noise signal, and taking the external microphone signal as reference signals to eliminate the noise element in the internal microphone signal and remain the voice element to obtain transmitting terminal signals of the headset; using sound dynamic compression technology to cut down and compensate the signals picked up by the external microphone in terms of sound pressure level such that the sound pressure range is compressed to a range acceptable by human ears and the signals picked up by the external microphone and the receiving terminal signal received by the headset are broadcast together through a receiver of the headset. By means of the technical scheme of the present invention, the functions of protecting hearing, enhancing voice and monitoring a three-dimensional environment can be achieved comprehensively under strong-noise environments.
Abstract:
The present invention discloses a heart rate detection method used in an earphone and an earphone capable of detecting heart rate. The method comprises: providing a cavity inside the earphone and installing a microphone in the cavity; a shell of the earphone is provided with a hole at a position where an opening of the cavity clings to, and when the earphone is worn, the cavity and the auricle which the hole clings to form an enclosed space; collecting signals generated by pressure change in the cavity by the microphone when the earphone is worn; and detecting heart rate according to the signals collected by the microphone. According to the technical scheme of the invention, the microphone is placed in the enclosed cavity formed by the cavity in the earphone and the shell of the earphone, which reduces interference of external noises, and reinforces signal information collected by the microphone.
Abstract:
An earphone control method, an earphone control system and an earphone. The earphone control method includes: selecting a motion state judgement parameter of a wearer for controlling an earphone and setting an alert condition according to the selected motion state judgement parameter; real-timely monitoring and acquiring behavior data of the earphone wearer; calculating the motion state judgement parameter by using the acquired behavior data to obtain a motion state judgement parameter value; and judging whether or not the motion state judgement parameter value satisfies the alert condition; if the motion state judgement parameter value satisfies the alert condition, determining to enter an earphone alert state and controlling to perform corresponding alert operation on the earphone.
Abstract:
A noise-reduction control method includes performing frequency-domain weighting and temporal-domain weighting to a noise signal collected at current time to obtain a weighted energy. Judging whether active noise-reduction control is needed based on the weighted energy; calculating an energy value of a first sub-band and an energy value of a second sub-band of the noise signal collected by the feedforward microphone at the current time, wherein the first sub-band and the second sub-band are determined based on a feedforward noise-reduction curve and a feedback noise-reduction curve of the earphone, respectively. Determining a feedforward noise-reduction amount and a feedback noise-reduction amount based on the energy value of the first sub-band and the energy value of the second sub-band, respectively. Controlling the earphone to perform feedforward noise reduction based on the feedforward noise-reduction amount, and controlling the earphone to perform feedback noise reduction based on the feedback noise-reduction amount.
Abstract:
A photoelectric type pulse signal measuring method includes, obtaining a main-path light signal transmitted by a photoelectric transmitter and reflected back from a surface of skin having an artery underneath, obtaining at least one auxiliary-path light signal receiving an ambient light signal, and based on the at least one auxiliary-path light signal, adaptively filtering an ambient light interference from the main-path light signal and obtaining an adaptive filtration result; or obtaining at least one auxiliary-path light signal transmitted by the same photoelectric transmitter and reflected back from a surface of skin without any artery underneath, and based on the auxiliary-path light signal, adaptively filtering a motion interference from the main-path light signal; then extracting a pulse signal from the adaptive filtration result. The present invention can simply and effectively eliminate the ambient light interference or motion interference upon photoelectric pulse signal measurement. Photoelectric type pulse signal measuring devices are also disclosed.
Abstract:
The present invention discloses a tweeter and a method for realizing omnidirectional high pitch sound field. The tweeter has advantages of small volume and low cost and comprises a first tweeter unit corresponding to a left sound track, a second tweeter unit corresponding to a right sound track, a radiation structure formed by a plurality of horns. In this technical solution, the tweeter has stereo effect and realizes 360° sound field of the high pitch portion with a smaller volume by disposing that the number of the horns of the left sound track is the same as the number of the horns of the right sound track in the radiation structure, the horns of the left sound track and the horns of the right sound track are disposed at intervals, and the plurality of horns are disposed evenly on a whole plane.