摘要:
A cabled conductor is provided for use in a cryogenically cooled circuit including refrigeration having a predetermined operating temperature and efficiency. The conductor includes multiple conductor strands cabled about the longitudinal axis of the conductor at a preselected cabling period, each strand including a composite of superconducting ceramic in intimate contact with conductive matrix material. Each filament has high performance regions in which the filament material is well-textured with its preferred direction aligned perpendicular to the widest longitudinal cross-section of the conductor alternating with poorly superconducting regions which are at least about half the diameter of a filament in length and in which the superconducting ceramic filament is strained by transposition in excess of its critical strain limit. In the poorly superconducting regions, the conductive matrix material provides an alternate current path. The ratio of the average length of the poorly superconducting regions to the preselected cabling period is less than about (&rgr;300e/&rgr;oe)&egr;E, where &rgr;oe is the resistivity of the composite at the operating temperature; &rgr;300e is the resistivity of the composite at 300 Kelvins; and &egr; is the predetermined efficiency of the refrigeration means at its operating temperature. In the preferred embodiment, this ratio is less than 1:4, and preferably less than 1:20.
摘要:
A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductor. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step. In a preferred embodiment, the filament cross-section, filament twist pitch, and strand lay pitch are cooperatively selected to provide a filament transposition area which is always at least ten times the preferred direction area of a typical grain of the desired anisotropic superconducting compound. For materials requiring biaxial texture, the texturing step preferably includes application of a texturing process with a second primary component in a predetermined direction in the plane of the widest longitudinal cross-section of the conductor.
摘要:
A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductors. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step. In a preferred embodiment, the filament cross-section, filament twist pitch, and strand lay pitch are cooperatively selected to provide a filament transposition area which is always at least ten times the preferred direction area of a typical grain of the desired anisotropic superconducting compound. For materials requiring biaxial texture, the texturing step preferably includes application of a texturing process with a second primary component in a predetermined direction in the plane of the widest longitudinal cross-section of the conductor.
摘要:
A method for preparing an oxide superconductor cable includes transposing a plurality of oxide superconductor strands along a longitudinal axis so as to form a cable and exposing the cable to a two step heat treatment after cabling of the oxide strands, the heat treatment comprising, (a) heating the cable to and maintaining the cable at a first temperature sufficient to partially melt the article, such that a liquid phase co-exists with the desired oxide superconductor phase; and (b) cooling the cable to and maintaining the cable at a second temperature sufficient to substantially transform the liquid phase into the desired oxide superconductor. The oxide superconductor multistrand cable includes a plurality of oxide superconductor strands, each of the strands including an oxide superconductor having an irreversible melt characteristic, wherein the plurality of oxide strands are transposed about a longitudinal axis, such that each of the strands are substantially electrically and substantially mechanically isolated; and wherein the cable exhibits critical transport properties (Jc) of at least about 10,000 A/cm2 at 77K, self field.
摘要翻译:制备氧化物超导体电缆的方法包括沿着纵向轴线转置多个氧化物超导体股线,以形成电缆,并且在电缆穿过氧化物线束之后将电缆暴露于两步热处理,该热处理包括:(a 将电缆加热并将电缆保持在足以部分熔化制品的第一温度,使得液相与期望的氧化物超导体相共存; 和(b)将电缆冷却到并将电缆保持在足以基本上将液相转变成所需氧化物超导体的第二温度。 氧化物超导体多股线缆包括多个氧化物超导体股线,每个股线包括具有不可逆熔融特性的氧化物超导体,其中多个氧化物股线围绕纵向轴线转置,使得每根股线基本上电气和 基本上机械隔离; 并且其中所述电缆在77K处表现出至少约10,000A / cm 2的临界传输特性(Jc)。
摘要:
An oxide superconducting cable is provided having a plurality of strands comprised of at least one oxide superconductor filament sheathed in a ductile and conductive metal matrix and least one of said strand further comprising a substantially continuous high resistivity coating substantially surrounding said at least one strand. The strands are positioned and arranged to form a cable. The cable is prepared by (a) applying a ductile predecessor coating to a plurality of strands, each said strand comprised of at least one oxide superconductor filament or a precursor thereto sheathed in a ductile metal matrix, and the ductile predecessor capable of conversion into a high resistivity material; (b) assembling the plurality of strands into a cable; and (c ) converting the ductile predecessor into a high resistivity material, where steps (a) and (b) can be performed in any order.
摘要:
An elongated current limiting composite material comprising one or more high-temperature superconductor filaments and a second electrically conductive member, which may include a sheath of high bulk resistivity surrounding the filament. The current limiter exhibits dissipation in the range of 0.05-0.5 V/cm at currents of 3-10 times the operating current, thereby minimizing fault currents and improving recovery capability.
摘要翻译:包括一个或多个高温超导体细丝和第二导电构件的细长限流复合材料,其可以包括围绕细丝的高体积电阻率的护套。 电流限制器在工作电流的3-10倍的电流下表现出0.05-0.5 V / cm的范围内的耗散,从而最大限度地减少故障电流并提高恢复能力。
摘要:
The invention provides a multifilamentary superconducting composite article comprising multiple substantially electrically decoupled domains, each including one or more fine, preferably twisted filaments of a desired superconducting oxide material. In a preferred embodiment, the article comprises a matrix, which substantially comprises a noble metal, a conductive jacketing layer surrounding the matrix, a plurality of discrete filament decoupling layers, each comprising an insulating material, disposed within the matrix to separate the matrix into a plurality of substantially electrically decoupled domains; a plurality of filaments, each comprising a desired superconducting oxide, which are disposed within and essentially encapsulated by the matrix and chemically isolated thereby from the decoupling layers, each of the electrically decoupled domains containing at least one filament. It provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. A process and intermediate for making the article are also provided. The article may be manufactured by first, forming a composite intermediate comprising multiple domains, each including one or more fine, preferably twisted filaments of a superconducting oxide or its precursors and then thermomechanically processing the intermediate at conditions sufficient to produce at least one of the effects of texturing, crack healing and, if a precursor to the desired superconducting oxide remains, phase transformation in the filament material under conditions which support the electrical separation of the domains. Preferably, the forming step includes the step of providing filament decoupling layers comprising insulating materials or their predecessors to provide the desired domain separation and most preferably, the insulating material is formed in situ from its predecessor during the thermomechanical processing step. Oxide-forming predecessors are preferred, especially oxide forming materials selected from the group consisting of the transition metals, the alkaline earths, titanium, zirconium, niobium, molybdenum, aluminum, and their alloys. In a preferred embodiment, the desired superconducting oxide material is a member of the bismuth or yttrium families of oxide superconductors.
摘要:
This invention relates to a practical superconducting conductor based upon biaxially textured high temperature superconducting coatings. In particular, methods for producing flexible and bend strain-resistant articles and articles produced in accordance therewith are described which provide improved current sharing, lower hysteretic losses under alternating current conditions, enhanced electrical and thermal stability and improved mechanical properties between otherwise isolated films in a coated high temperature superconducting (HTS) wire. Multilayered materials including operational material which is sensitive to bend strain can be constructed, in which the bend strain in the region in which such operational material is located is minimized. The invention also provides a means for splicing coated tape segments and for termination of coated tape stack ups or conductor elements. In one embodiment, a multi-layer high temperature superconductor is provided and includes first and second high temperature superconductor coated elements. Each element includes a substrate, at least one buffer deposited on the substrate, a high temperature superconductor layer, and a cap layer. The first and second high temperature superconductor coated elements are joined at the first and second cap layers.
摘要:
A multifilamentary superconducting composite article comprising multiple substantially electrically decoupled domains, each including one or more fine, preferably twisted filaments of a desired superconducting oxide material. In a preferred embodiment, the article comprises a matrix, which substantially comprises a noble metal, a conductive jacketing layer surrounding the matrix, a plurality of discrete filament decoupling layers, each comprising an insulating material, disposed within the matrix to separate the matrix into a plurality of substantially electrically decoupled domains; a plurality of filaments, each comprising a desired superconducting oxide, which are disposed within and essentially encapsulated by the matrix and chemically isolated thereby from the decoupling layers, each of the electrically decoupled domains containing at least one filament. It provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. The article may be manufactured by first, forming a composite intermediate comprising multiple domains, each including one or more fine, preferably twisted filaments of a superconducting oxide or its precursors and then thermomechanically processing the intermediate at conditions sufficient to produce at least one of the effects of texturing, crack healing and, if a precursor to the desired superconducting oxide remains, phase transformation in the filament material under conditions which support the electrical separation of the domains. Preferably, the forming step includes the step of providing filament decoupling layers comprising insulating materials or their predecessors to provide the desired domain separation and most preferably, the insulating material is formed in situ from its predecessor during the thermomechanical processing step. Oxide-forming predecessors are preferred, especially oxide forming materials selected from the group consisting of the transition metals, the alkaline earths, titanium, zirconium, niobium, molybdenum, aluminum, and their alloys. In a preferred embodiment, the desired superconducting oxide material is a member of the bismuth or yttrium families of oxide superconductors.
摘要:
This invention relates to a practical superconducting conductor based upon biaxially textured high temperature superconducting coatings. In particular, methods for producing flexible and bend strain-resistant articles and articles produced in accordance therewith are described which provide improved current sharing, lower hysteretic losses under alternating current conditions, enhanced electrical and thermal stability and improved mechanical properties between otherwise isolated films in a coated high temperature superconducting (HTS) wire. Multilayered materials including operational material which is sensitive to bend strain can be constructed, in which the bend strain in the region in which such operational material is located is minimized. The invention also provides a means for splicing coated tape segments and for termination of coated tape stack ups or conductor elements. In one embodiment, a multi-layer high temperature superconductor is provided and includes first and second high temperature superconductor coated elements. Each element includes a substrate, at least one buffer deposited on the substrate, a high temperature superconductor layer, and a cap layer. The first and second high temperature superconductor coated elements are joined at the first and second cap layers.