摘要:
A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
摘要翻译:结晶材料具有DDR框架型,并且以其煅烧的无水形式具有涉及摩尔关系的组成:<?in-line-formula description =“In-line formula”end =“lead”?>(n) X 2 O 3:YO 2,<β在线式描述=“在线式”末端=“尾”→其中X为三价元素,Y为四价元素,n为0至小于0.01,其中 所述材料的晶体具有小于或等于2微米的平均直径。 该物质在N-乙基anium化合物作为引导剂的存在下合成。
摘要:
The synthesis of a crystalline material, in particular, a high silica zeolite, comprising a chabazite-type framework molecular sieve is conducted in the presence of an organic directing agent having the formula: [R1R2R3N—R4]+Q− wherein R1 and R2 are independently selected from hydrocarbyl groups and hydroxy-substituted hydrocarbyl groups having from 1 to 3 carbon atoms, provided that R1 and R2 may be joined to form a nitrogen-containing heterocyclic structure, R3 is an alkyl group having 2 to 4 carbon atoms and R4 is selected from a 4- to 8-membered cycloalkyl group, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms; and a 4- to 8-membered heterocyclic group having from 1 to 3 heteroatoms, said heterocyclic group being, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms and the or each heteroatom in said heterocyclic group being selected from the group consisting of O, N, and S, or R3 and R4 are hydrocarbyl groups having from 1 to 3 carbon atoms joined to form a nitrogen-containing heterocyclic structure; and Q− is a anion.
摘要:
A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
摘要:
A crystalline material is described that has an AEI framework type, wherein the material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element n is from 0 to less than 0.01. The material is normally synthesized in a halide, typically a fluoride, medium and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
摘要翻译:描述了具有AEI骨架类型的结晶材料,其中以煅烧的无水形式的材料具有涉及摩尔关系的组成:<?in-line-formula description =“In-line Formulas”end =“lead “?”(n)X 2 O 3:YO 2,<βin-line-formula description =“In-Line Formulas” end =“tail”?>其中X为三价元素,Y为四价元素,n为0至小于0.01。 该材料通常在卤化物(通常为氟化物)介质中合成,并且在甲醇转化为低级烯烃,特别是乙烯和丙烯中表现出活性和选择性。
摘要:
The synthesis of a crystalline material, in particular a high silica zeolite, having a chabazite-type framework is aided by the addition to the synthesis mixture of seeds of an AEI framework-type material. The chabazite-type product has a relatively small crystal size and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
摘要:
A method is disclosed of synthesizing a crystalline material comprising a CHA framework type molecular sieve and having a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to less than 0.01. The method comprises preparing a reaction mixture capable of forming said material, said mixture comprising a source of water, a source of an oxide of a tetravalent element Y and optionally a source of an oxide of a trivalent element X, wherein the reaction mixture is substantially free of fluoride ions added as HF; maintaining the reaction mixture under conditions sufficient to form crystals of the crystalline material; and than recovering the crystalline material. The reaction mixture comprises either a specific directing agent for directing the formation of a CHA framework type molecular sieve and/or a H2O:YO2 molar ratio of greater than 20. In one embodiment, the resultant crystalline material is free of stacking faults and/or any intergrown phase with an AEI framework type molecular sieve.
摘要:
In a method of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve, a synthesis mixture is provided comprising water, a source of aluminum, a source of phosphorus, optionally a source of a metal other than aluminum, a tertiary amine, and an alkylating agent capable of reacting with said tertiary amine to form a quaternary ammonium compound capable of directing the synthesis of said molecular sieve. The synthesis mixture is maintained under conditions sufficient to cause the alkylating agent to react with the tertiary amine to produce the quaternary ammonium compound and to induce crystallization of the molecular sieve.
摘要:
In a method of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve, a synthesis mixture is provided comprising water, a source of aluminum, a source of phosphorus, optionally a source of a metal other than aluminum, a tertiary amine, and an alkylating agent capable of reacting with said tertiary amine to form a quaternary ammonium compound capable of directing the synthesis of said molecular sieve. The synthesis mixture is maintained under conditions sufficient to cause the alkylating agent to react with the tertiary amine to produce the quaternary ammonium compound and to induce crystallization of the molecular sieve.
摘要:
The invention is directed to a method for preparing microporous aluminophosphate or silicoaluminophosphate molecular sieves having the CHA framework type, the process comprising the steps of a) forming a reaction mixture comprising a source of aluminum, a source of phosphorus, optionally a source of silicon, at least one source of fluoride ions and at least one template containing one or more N,N-dimethylamino moieties, b) inducing crystallization of aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture; c) recovering aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture. The invention also relates to the molecular sieves obtained by this method and to molecular sieve catalyst compositions containing these molecular sieves.
摘要:
A large pore (metallo)aluminophosphate molecular sieve is disclosed The material has an X-ray diffraction pattern including the lines listed in Table 4 and is synthesized in the presence of 4-dimethylaminopyridine as structure directing agent.