摘要:
The invention is a method of making a hermetic via in a ceramic substrate that is comprised of noble metal powder in a glass-free paste that contains an admixture of a particulate phase of niobium pentoxide. The electrically conductive platinum provides excellent electrical conductivity while the niobium pentoxide phase prevents shrinkage of the paste during thermal processing and binds to both the ceramic and the noble metal particulates in the via, thus maintaining a hermetic seal around the via.
摘要:
The invention is a hermetic via in a ceramic substrate that is comprised of noble metal powder in a glass-free paste that contains an admixture of a particulate phase of niobium pentoxide. The electrically conductive platinum provides excellent electrical conductivity while the niobium pentoxide phase prevents shrinkage of the paste during thermal processing and binds to both the ceramic and the noble metal particulates in the via, thus maintaining a hermetic seal around the via.
摘要:
A method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a compact titanium-nickel filler material placed between the two parts and heated at a temperature that is less than the melting point of either the stainless steel part or the titanium part. The compact filler material is made of particles, preferably spheres, of discrete layers of nickel and titanium metal that react with each other and with the stainless and titanium parts to form a strong assembly when thermally processed. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part.
摘要:
The invention is a component assembly and method of hermetically bonding a ceramic part to a metal part by welding and brazing a component assembly comprised of metal parts, a ceramic part, and an intermediate metal ferrule. The ceramic part is preferably a hollow tube of partially-stabilized zirconia that is brazed to an alignment ferrule that is preferably titanium or a titanium alloy, such as Ti-6Al-4V. On one end the component assembly is brazed to an end cap for closure. On the other end the alignment ferrule is preferably brazed to a ring that is preferably comprised of a noble metal, such as platinum, iridium, or alloys of platinum and iridium. The ring is then laser welded to an eyelet that is preferably comprised of a noble metal.
摘要:
The invention is a method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a very thin substantially pure nickel filler material placed between the two parts and heated at a temperature that is greater than the temperature of the eutectic formed between the titanium part and the substantially pure nickel filler material, but that is less than the melting point of either the filler material, the stainless steel part, or the titanium part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part. The bonded component assembly is optionally treated with acid to remove any residual free nickel and nickel salts, to assure a biocompatible component assembly for implantation in living tissue.
摘要:
A method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a compact titanium-nickel filler material placed between the two parts and heated at a temperature that is less than the melting point of either the stainless steel part or the titanium part. The compact filler material is made of particles, preferably spheres, of discrete layers of nickel and titanium metal that react with each other and with the stainless and titanium parts to form a strong assembly when thermally processed. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part.
摘要:
A method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a laminated titanium-nickel filler material placed between the two parts and heated at a temperature that is less than the melting point of either the stainless steel part or the titanium part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part. The bonded component assembly is optionally treated with acid to remove any residual free nickel and nickel salts, to assure a biocompatible component assembly, if implanted in living tissue.
摘要:
A method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a laminated titanium-nickel filler material placed between the two parts and heated at a temperature that is less than the melting point of either the stainless steel part or the titanium part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part. The bonded component assembly is optionally treated with acid to remove any residual free nickel and nickel salts, to assure a biocompatible component assembly, if implanted in living tissue.
摘要:
A method of braze bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a very thin substantially pure nickel foil filler material placed between the two parts and heated at a temperature that is greater than the temperature of the eutectic formed between the titanium part and the substantially pure nickel filler material, but that is less than the melting point of either the filler material, the stainless steel part, or the titanium part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part. The bonded component assembly is optionally treated with acid to remove any residual free nickel and nickel salts, to assure a biocompatible component assembly for implantation in living tissue.