Solid state joining using additive friction stir processing

    公开(公告)号:US10105790B2

    公开(公告)日:2018-10-23

    申请号:US15334392

    申请日:2016-10-26

    发明人: Kumar Kandasamy

    摘要: Additive friction stir methods for joining materials are provided. The methods comprise providing first and second substrates to be joined; providing a forming plate comprising one or more forming cavities; placing the first and second substrates in communication with the forming plate; placing the first and second substrates in communication with each other; rotating and translating an additive friction-stir tool relative to the substrates; feeding a filler material through the additive friction-stir tool; deforming the filler material and the first and second substrates; and extruding one or more of the filler material and the first and second substrates into one or more of the forming cavities of the forming plate. Interaction of the additive friction-stir tool with the substrates generates heat and plastic deformation at the joint to weld the substrates at the joint. The methods include introduction of reinforcing material at the joint through addition of the filler material.

    Joint part
    5.
    发明授权

    公开(公告)号:US10105778B2

    公开(公告)日:2018-10-23

    申请号:US14361539

    申请日:2012-11-19

    发明人: Takashi Arai

    摘要: Provided is joint part capable of suppressing diffusion of carbon and nitrogen contained in the steel member to the TiAl-based alloy member and suppressing formation of voids, titanium carbide or a nitride due to diffusion of carbon and nitrogen contained in the steel member, and thereby suppressing decrease in the brazing strength. A joint part comprises a steel member containing alloy elements including C and Cr, a TiAl-based alloy member, and a Ni-based brazing filler metal via which the steel member and the TiAl-based alloy member are joined to each other, wherein the steel member has a carbide and a nitride each forming a bond with at least one of the alloy elements at least on a side of a boundary with the Ni-based brazing filler metal, and diffusion of C and N to the Ni-based brazing filler metal adjacent to the TiAl-based alloy member is suppressed by the carbide and the nitride. The joint part may be a turbine body 1 comprising a turbine wheel 2 and a shaft 3, and a structural steel material of the shaft 3 is structural steel material containing 0.30 to 0.45 wt % of C and 0.85 to 1.25 wt % of Cr, or a martensitic stainless steel material containing at most 15 wt % of C and 11.5 to 13 wt % of Cr.