Abstract:
A novel class of compounds, anionic Group VIII metal hydrides containing phosphorus, arsenic and antimony organoligands is described, such as potassium tris and bis(triphenylphosphine) ruthenium hydride. The compounds are useful as homogeneous catalysts in the hydrogenation of aldehydes, ketones, olefins or alkynes. Processes for producing the compounds are also described.
Abstract:
A novel class of heterogeneous catalysts, containing Group VIII transition metals in combination with alkali organic compounds is prepared, such as potassium naphthalene on ruthenium on carbon. The catalysts are useful as heterogeneous catalysts in the hydrogenation of carboxylic acid esters. A process for producing the materials is described. The catalysts permit the process of the hydrogenation of carboxylic acid esters to primary alcohols to be conducted with the ester in the liquid phase at a temperature not exceeding about 150.degree. C. with high selectivity. Catalysts of Group VIII transition metals and alkali metal on carbon are also useful in such processes.
Abstract:
A novel class of heterogeneous catalysts, containing Group VIII transition metals in combination with alkali organic compounds is prepared, such as potassium naphthalene on ruthenium on carbon. The catalysts are useful as heterogeneous catalysts in the hydrogenation of carboxylic acid esters. A process for producing the materials is described. The catalysts permit the process of the hydrogenation of carboxylic acid esters to primary alcohols to be conducted with the ester in the liquid phase at a temperature not exceeding about 150.degree. C. with high selectivity. Catalysts of Group VIII transition metals and alkali metal on carbon are also useful in such processes.
Abstract:
A novel class of compounds, anionic Group VIII metal hydrides containing phosphorus, arsenic and antimony organoligands is described, such as potassium tris and bis(triphenylphosphine) ruthenium hydride. The compounds are useful as homogeneous catalysts in the hydrogenation of aldehydes, ketones, olefins or alkynes. Processes for producing the compounds are also described.
Abstract:
A novel process is described for the homogeneous hydrogenation of nitriles to primary amines utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the high yield hydrogenation of nitriles to primary amines to be conducted under mild conditions of temperature and pressure with high selectivity and eliminates the need for the presence of ammonia to suppress the formation of significant amounts of secondary and tertiary amines.
Abstract:
A novel process is described for the homogeneous hydrogenation of carboxylic acid esters to primary alcohols utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the process to be conducted in solution under mild conditions of temperature and pressure with high selectivity and eliminates the disadvantages of utilizing heterogeneous catalysts. A process is also described for decarbonylating formate esters utilizing said compositions as catalysts.
Abstract:
An improved process is described for the homogeneous hydrogenation of polycyclic aromatic hydrocarbons utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the process to be conducted under mild conditions of temperature and pressure with high selectivity for the production of partially hydrogenated derivatives of polycyclic aromatic hydrocarbons such as 1,2,3,4-tetrahydronaphthalene, and eliminates the need for the presence of base or carbon monoxide atmosphere in the process.
Abstract:
A catalyst, useful for the direct epoxidation of olefins, is disclosed. The catalyst comprises palladium nanoparticles, support nanoparticles, and a titanium zeolite having a particle size of 2 microns or greater. The palladium nanoparticles are deposited on the support nanoparticles to form supported palladium nanoparticles, and the supported palladium nanoparticles are deposited on the titanium zeolite; or the supported palladium nanoparticles are deposited on a carrier having a particle size of 2 microns or greater. The invention also includes a process for producing an epoxide comprising reacting an olefin, hydrogen and oxygen in the presence of the catalyst. The catalysts are more active in epoxidation reactions, while demonstrating the same or better selectivity.
Abstract:
A supported catalyst and a catalyst mixture, useful for the direct epoxidation of olefins, are disclosed. The supported catalyst comprises a noble metal, lead, and a carrier that has been treated by contacting with nitric acid. The catalyst mixture comprises a titanium or vanadium zeolite and the supported catalyst. The invention also includes a process for producing an epoxide comprising reacting an olefin, hydrogen and oxygen in the presence of the catalyst mixture. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.
Abstract:
Catalyst mixtures useful for the direct epoxidation of olefins are disclosed. The catalyst mixture comprises a titanium or vanadium zeolite and a supported catalyst comprising a noble metal, bismuth, and a carrier. The invention includes a process for producing an epoxide comprising reacting an olefin, hydrogen and oxygen in the presence of the catalyst mixture. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.