Abstract:
A novel class of compounds, anionic Group VIII metal hydrides containing phosphorus, arsenic and antimony organoligands is described, such as potassium tris and bis(triphenylphosphine) ruthenium hydride. The compounds are useful as homogeneous catalysts in the hydrogenation of aldehydes, ketones, olefins or alkynes. Processes for producing the compounds are also described.
Abstract:
A novel class of heterogeneous catalysts, containing Group VIII transition metals in combination with alkali organic compounds is prepared, such as potassium naphthalene on ruthenium on carbon. The catalysts are useful as heterogeneous catalysts in the hydrogenation of carboxylic acid esters. A process for producing the materials is described. The catalysts permit the process of the hydrogenation of carboxylic acid esters to primary alcohols to be conducted with the ester in the liquid phase at a temperature not exceeding about 150.degree. C. with high selectivity. Catalysts of Group VIII transition metals and alkali metal on carbon are also useful in such processes.
Abstract:
A novel process is described for the homogeneous hydrogenation of nitriles to primary amines utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the high yield hydrogenation of nitriles to primary amines to be conducted under mild conditions of temperature and pressure with high selectivity and eliminates the need for the presence of ammonia to suppress the formation of significant amounts of secondary and tertiary amines.
Abstract:
A novel process is described for the homogeneous hydrogenation of carboxylic acid esters to primary alcohols utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the process to be conducted in solution under mild conditions of temperature and pressure with high selectivity and eliminates the disadvantages of utilizing heterogeneous catalysts. A process is also described for decarbonylating formate esters utilizing said compositions as catalysts.
Abstract:
An improved process is described for the homogeneous hydrogenation of polycyclic aromatic hydrocarbons utilizing anionic Group VIII metal hydride compositions as catalysts which contain phosphorus, arsenic or antimony organoligands. Use of these anionic catalysts allows the process to be conducted under mild conditions of temperature and pressure with high selectivity for the production of partially hydrogenated derivatives of polycyclic aromatic hydrocarbons such as 1,2,3,4-tetrahydronaphthalene, and eliminates the need for the presence of base or carbon monoxide atmosphere in the process.
Abstract:
A novel class of heterogeneous catalysts, containing Group VIII transition metals in combination with alkali organic compounds is prepared, such as potassium naphthalene on ruthenium on carbon. The catalysts are useful as heterogeneous catalysts in the hydrogenation of carboxylic acid esters. A process for producing the materials is described. The catalysts permit the process of the hydrogenation of carboxylic acid esters to primary alcohols to be conducted with the ester in the liquid phase at a temperature not exceeding about 150.degree. C. with high selectivity. Catalysts of Group VIII transition metals and alkali metal on carbon are also useful in such processes.
Abstract:
A novel class of compounds, anionic Group VIII metal hydrides containing phosphorus, arsenic and antimony organoligands is described, such as potassium tris and bis(triphenylphosphine) ruthenium hydride. The compounds are useful as homogeneous catalysts in the hydrogenation of aldehydes, ketones, olefins or alkynes. Processes for producing the compounds are also described.
Abstract:
The present invention is a membrane and a process for separating at least one component from at least one other component in a gas mixture. A gaseous mixture is passed over a membrane having a thin film of a molten salt hydrate which is selectively permeable to at least one component in the gaseous mixture.
Abstract:
Benzene, or an alkylbenzene, is hydrogenated by reaction with hydrogen in the presence of a Group IVa (titanium family) or Va metal hydride catalyst. The catalyst may be a simple hydride such as ZrH.sub.2 or a hydride of an alloy such as Cu.sub.3 Zr or may be a complex material. One complex material is the reaction product of a Group IVa or Va metal halide, such as ZrCl.sub.4 with an alkyllithium or aryllithium, such as n-butyllithium, in a hydrocarbon solvent.
Abstract:
Monolefins such as ethylene are reacted with ammonia using alkali metal amide catalysts such as cesium or rubidium amides, or low melting mixtures of amides such as cesium/potassium, cesium/sodium or sodium/potassium amides. Conversions are improved compared to reactions using sodium or potassium amide alone. Conversions of ethylene are improved also when liquid ammonia is present.