Abstract:
The invention concerns a process for producing carbon monoxide (CO) from carbon dioxide (CO2) in a solid oxide electrolysis cell (SOEC) or SOEC stack, wherein CO2 is led to the fuel side of the stack with an applied current and excess oxygen is transported to the oxygen side of the stack, optionally using air or nitrogen to flush the oxygen side, and wherein the product stream from the SOEC, containing CO mixed with CO2, is subjected to a separation process. The process further comprises heating the inlet gas on both the fuel side and the oxygen side by means of separate heating units, so as to supply heat to the SOEC, where the operation temperature of said heating units is at least equal to the operation temperature of the cell stack minus 50° C., preferably at least equal to the operation temperature of the cell stack.
Abstract:
In a process for the synthesis of a nitrile by endothermic catalyzed reaction of ammonia with a hydrocarbon using heating obtained by passing an alternating current through a metallic coil, the endothermic reaction between ammonia and the hydrocarbon takes place in a reactor with direct inductive heating in the reaction zone. The heating is extremely fast, which makes the reaction practically instantaneous.
Abstract:
A method for upgrading a hydrocarbon feed gas to methanol, including the steps of: providing a hydrocarbon feed gas; optionally, purifying the hydrocarbon feed gas in a gas purification unit; optionally, prereforming the hydrocarbon feed gas together with a steam feedstock in a prereforming unit; carrying out steam methane reforming in a reforming reactor heated by means of an electrical power source; providing the synthesis gas to a methanol synthesis unit to provide a product including methanol and an off-gas. Also, a system for upgrading a hydrocarbon feed gas to methanol.
Abstract:
In a method for generating ammonia synthesis gas by electrolysis, comprising feeding a mixture of steam and compressed air into the first of a series of electrolysis units and passing the outlet from one electrolysis unit to the inlet of the next electrolysis unit together with air, the electrolysis units are run in endothermal mode and the nitrogen part of the synthesis gas is provided by burning the hydrogen produced by steam electrolysis by air in or between the electrolysis units. The electrolysis units are preferably solid oxide electrolysis cell (SOEC) stacks.
Abstract:
A reactor system for dehydrogenation of alkanes in a given temperature range upon bringing a reactant stream including alkanes into contact with a catalytic mixture. The reactor system includes a reactor unit arranged to accommodate the catalytic mixture, where the catalytic mixture includes catalyst particles and a ferromagnetic material. The catalyst particles are arranged to catalyze the dehydrogenation of alkanes. The ferromagnetic material is ferromagnetic at least at temperatures up to an upper limit of the given temperature range. The reactor system moreover includes an induction coil arranged to be powered by a power source supplying alternating current and being positioned so as to generate an alternating magnetic field within the reactor unit upon energization by the power source, whereby the catalytic mixture is heated to a temperature within the temperature range by means of the alternating magnetic field. Also, a catalytic mixture and a method of dehydrogenating alkanes.
Abstract:
The invention relates to a catalyst regeneration process for a tar reforming catalyst within a catalyst bed in a tar reformer. The process comprises the steps of:—Admitting a main gas stream with controlled temperature and oxygen content to an inlet into the tar reformer;—Passing the main gas stream through the catalyst bed to form an oxygen depleted gas stream;—Exiting the oxygen depleted gas stream from the tar reformer; and—Recycling at least a part of the oxygen depleted gas stream exiting from the tar reformer back into said main gas stream upstream said tar reformer. The temperature of said main gas stream at the inlet is controlled to be within the range from about 500° C. to about 1000° C.
Abstract:
The invention relates to a catalyst regeneration process for a tar reforming catalyst within a catalyst bed in a tar reformer. The process comprises the steps of:—Admitting a main gas stream with controlled temperature and oxygen content to an inlet into the tar reformer;—Passing the main gas stream through the catalyst bed to form an oxygen depleted gas stream;—Exiting the oxygen depleted gas stream from the tar reformer; and—Recycling at least a part of the oxygen depleted gas stream exiting from the tar reformer back into said main gas stream upstream said tar reformer. The temperature of said main gas stream at the inlet is controlled to be within the range from about 500° C. to about 1000° C.
Abstract:
Process for dehydrogenation of alkanesor alkylbenzenes by using metal sulfide catalyst under the presence of small amounts of hydrogen sulfide.
Abstract:
Process for the production of a chemical compound from a carbon dioxide starting material, comprising the steps of a) providing a feed stream consisting mainly of carbon dioxide; b) electrolyzing in an electrolysis stage the carbon dioxide in the feed stream to a first gas stream containing carbon monoxide and a second gas stream containing oxygen, wherein the molar ratio between carbon monoxide and oxygen is about 1:0.5 in an electrolysis stage; c) adjusting the composition of the first gas stream or the second gas stream or both gas streams to include carbon dioxide, either by operating at less than full conversion of CO2 or by sweeping one or both gas streams with a gas containing CO2 or by at some stage between the electrolysis cell and the oxidative carbonylation reactor diluting one or both gas streams with a gas containing CO2; all while maintaining an overall molar ratio of carbon monoxide to oxygen of about 1:0.5; and d) introducing the first and second process stream into a reaction stage and reacting the first and second process stream combined or in succession with a substrate to the chemical compound by means of an oxidative carbonylation reaction with the carbon monoxide and oxygen contained in the process feed stream.
Abstract:
Process for the production of a chemical compound from a carbon dioxide starting material, comprising the steps of a) providing a feed stream consisting mainly of carbon dioxide; b) electrolysing in an electrolysis stage the carbon dioxide in the feed stream to a first gas stream containing carbon monoxide and a second gas stream containing oxygen, wherein the molar ratio between carbon monoxide and oxygen is about 1:0.5 in an electrolysis stage; c) adjusting the composition of the first gas stream or the second gas stream or both gas streams to include carbon dioxide, either by operating at less than full conversion of CO2 or by sweeping one or both gas streams with a gas containing CO2 or by at some stage between the electrolysis cell and the oxidative carbonylation reactor diluting one or both gas streams with a gas containing CO2; all while maintaining an overall molar ratio of carbon monoxide to oxygen of about 1:0.5; and d) introducing the first and second process stream into a reaction stage and reacting the first and second process stream combined or in succession with a substrate to the chemical compound by means of an oxidative carbonylation reaction with the carbon monoxide and oxygen contained in the process feed stream.