Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltages output from the amplifiers of the plurality of pixels to digital values; and a conversion unit configured to convert the digital value output from the A/D converter to the number of photons by referring to reference data, for each of the plurality of pixels, and the reference data is created based on a gain and an offset value for each of the plurality of pixels.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
Abstract:
An image acquisition system 1 includes: a light source 3 which outputs illumination light; an optical scanner 7 which scans a sample S with the illumination light; an optical scanner control unit 9; a detection optical system 15, 17 which focuses fluorescence from the sample S; an imaging device 19 which has a light receiving surface 19c in which a plurality of pixel rows 19d are arranged, and an imaging control section 19b, and which can perform signal readout of each of the plurality of pixel rows 19d from the light receiving surface 19c; and a calculation unit 21 which calculates an interval of signal readout between adjacent pixel rows 19d, based on a moving speed of an illuminated region on the light receiving surface 19c; the imaging control section 19b controls signal readout of each pixel row 19d, based on the interval of the signal readout thus calculated.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltage output from the amplifier of each of the plurality of pixels to a digital value and output the digital value, a correction unit configured to correct the digital value output from the A/D converter so that an influence of a variation in a gain and an offset value among the plurality of pixels is curbed, a calculation unit configured to output a summed value obtained by summing the corrected digital values corresponding to at least two pixels, and a conversion unit configured to convert the summed value output from the calculation unit to a number of photons.
Abstract:
An image acquisition system 1 includes: a light source 3 which outputs illumination light; an optical scanner 7 which scans a sample S with the illumination light; an optical scanner control unit 9; a detection optical system 15, 17 which focuses fluorescence from the sample S; an imaging device 19 which has a light receiving surface 19c in which a plurality of pixel rows 19d are arranged, and an imaging control section 19b, and which can perform signal readout of each of the plurality of pixel rows 19d from the light receiving surface 19c; and a calculation unit 21 which calculates an interval of signal readout between adjacent pixel rows 19d, based on a moving speed of an illuminated region on the light receiving surface 19c; the imaging control section 19b controls signal readout of each pixel row 19d, based on the interval of the signal readout thus calculated.
Abstract:
An image acquisition system 1 includes: a light source 3 which outputs illumination light; an optical scanner 7 which scans a sample S with the illumination light; an optical scanner control unit 9; a detection optical system 15, 17 which focuses fluorescence from the sample S; an imaging device 19 which has a light receiving surface 19c in which a plurality of pixel rows 19d are arranged, and an imaging control section 19b, and which can perform signal readout of each of the plurality of pixel rows 19d from the light receiving surface 19c; and a calculation unit 21 which calculates an interval of signal readout between adjacent pixel rows 19d, based on a moving speed of an illuminated region on the light receiving surface 19c; the imaging control section 19b controls signal readout of each pixel row 19d, based on the interval of the signal readout thus calculated.
Abstract:
A photon counting device includes a plurality of pixels each including a photoelectric conversion element configured to convert input light to charge, and an amplifier configured to amplify the charge converted by the photoelectric conversion element and convert the charge to a voltage, an A/D converter configured to convert the voltages output from the amplifiers of the plurality of pixels to digital values; and a conversion unit configured to convert the digital value output from the A/D converter to the number of photons by referring to reference data, for each of the plurality of pixels, and the reference data is created based on a gain and an offset value for each of the plurality of pixels.