摘要:
An uplink feedback channel reporting method is disclosed for using the primary and secondary fast feedback channels to efficiently report the channel quality, MIMO feedback, and CQI types of data from a mobile station to a base station. The reporting method reports regular information periodically and non-regular information on demand.
摘要:
Technology is discussed for self-optimization approaches within wireless networks to optimize networks for energy efficiency, load capacity, and/or mobility, together with new, supporting channel state measurements and handover techniques. New, Channel State Information-Reference Signals (CSI-RSs) for yet-to-be-configured Cell-IDentifications (Cell-IDs) can be used to determine whether adjacent transmission cells can provide coverage for transmission cells that can be switched off for energy efficiency during formation of a Single Frequency Network (SFN). New approaches are also discussed to facilitate mobility within such a network. The new CSI-RSs and mobility approaches can also be used to split up such a SFN when changing load demands so require. Additionally, such new approaches can be used to create a SFN with a common Cell-ID where high mobility is required, such as near a roadway, and to break it up where high capacity is required, such as during a period of traffic congestion.
摘要:
Technology for device discovery using a device-to-device (D2D) sounding reference signal (SRS) and device discovery using D2D SRS in a channel measurement group (CMG) is disclosed. In an example, a user equipment (UE) configured for device discovery via a node using the D2D SRS can include a transceiver module. The transceiver module can send a radio resource control (RRC) device discovery request to a node, scan D2D SRS subframes of proximity UEs using D2D SRS triggering, and send feedback to the node of detected D2D SRS information of the proximity UEs. The proximity UE can be located within a same cell as the UE.
摘要:
A multi-radio medium-agnostic access architecture is proposed. The multi-radio medium-agnostic architecture features a medium-agnostic MAC that interfaces between the TCP/IP and the physical layers of user equipment, such as a laptop computer or cellular phone having multiple radios, so that the radios in the user equipment may operate simultaneously, seamlessly, and transparently to higher layers.
摘要:
Various embodiments are generally directed to techniques to identify the target of a packet in a wireless network. A transmitter node may include a connection identifier to generate a unique identifier corresponding to a connection between the transmitter node and a receiver node in the wireless network and a data packet transmitter to embed the unique identifier into a physical layer convergence protocol header corresponding to a packet to be transmitted to the receiver node. A node may include a data packet receiver to receive a physical layer convergence protocol header corresponding to a packet to be transmitted from a transmitter node in the wireless network to a receiver node in the wireless network and a header decoder to decode a unique identifier from the physical layer convergence protocol header, the unique identifier corresponding to a connection between the transmitter node and the receiver node.