Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
The present invention relates to a method for compensating for the breakdown of a reagent stored in an aqueous phase comprising at least one fluorescent compound and enabling the identification of particles, including the steps of: (i) measuring the fluorescence level FLUOm(t) of particles marked with said reagent; (ii) measuring the absorbance at at least one wavelength of a solution of said reagent, at a time t close to the time of said fluorescence level FLUOm(t) measurements, so as to determine at least one current optical density DO(t) of the reagent; and (iii) calculating a correction of the fluorescent level measurements using said at least one current optical density DO(t) and at least one initial optical density DO(0) of the reagent that has not been broken down. The invention also relates to a biological analysis device implementing the method.
Abstract:
The present invention concerns a device for analyzing biological parameters from a sample (6) comprising (i) first transferring means (5, 20, 25), (ii) first preparing means (7), (iii) means for measuring cellular components (8), (iv) second preparing means (10, 11, 22, 23, 24) capable of carrying out, on a sample from the first preparing means (7), at least one dilution with an assay reagent (R3) comprising particles functionalized at the surface with at least one ligand specific to at least one analyte of interest, (v) immunodetection measurement means (30, 31) capable of assaying at least one analyte of interest by measuring the aggregation of functionalized particles, said device further comprising (i) second transferring means (4, 21, 22, 26) at least partially separate from the first transferring means (5, 20, 25) and (ii) means for applying a magnetic field (28) capable of causing, by magnetic interaction, an acceleration of the aggregation of said functionalized particles, which comprise magnetic colloidal particles. The invention also concerns a method implemented in said device.
Abstract:
The present invention relates to a flow assay method in a liquid medium for an object (or element) of interest via the formation of aggregates of particles that are surface-functionalized by at least one functionalizing molecule, or receptor, specific for said object of interest.
Abstract:
The present invention concerns a device for analyzing biological parameters from a sample (6) comprising (i) first transferring means (5, 20, 25), (ii) first preparing means (7), (iii) means for measuring cellular components (8), (iv) second preparing means (10, 11, 22, 23, 24) capable of carrying out, on a sample from the first preparing means (7), at least one dilution with an assay reagent (R3) comprising particles functionalized at the surface with at least one ligand specific to at least one analyte of interest, (v) immunodetection measurement means (30, 31) capable of assaying at least one analyte of interest by measuring the aggregation of functionalized particles, said device further comprising (i) second transferring means (4, 21, 22, 26) at least partially separate from the first transferring means (5, 20, 25) and (ii) means for applying a magnetic field (28) capable of causing, by magnetic interaction, an acceleration of the aggregation of said functionalized particles, which comprise magnetic colloidal particles. The invention also concerns a method implemented in said device.