Abstract:
The present invention discloses a method. In a process of splitting and sending a data packet, after dividing a data packet to be sent to a destination node into multiple sub data packets, a front end node performs inter-packet combination encoding on the sub data packets in a combination encoding mode, and sends obtained encoded sub data packet groups to the destination node. Even if a channel state of a transmission path suddenly deteriorates, because the destination node does not need to wait to receive all encoded sub data packet groups provided that an original data packet can be parsed out by combining content in a received encoded sub data packet group and a corresponding decoding mode, a process in which the destination node receives the data packet is less affected by a sudden network case, and transmission efficiency is not significantly affected.
Abstract:
A data transmission method receiving a group identifier, a configuration information window length, and an offset between a start point of the configuration information window length and a paging occasion that are sent by a mobility management entity; establishing a public data radio bearer to a terminal corresponding to the group identifier; scrambling configuration information of the public data radio bearer by using a radio network temporary identifier; sending a paging message carrying the group identifier and the radio network temporary identifier to the terminal; sending the scrambled configuration information of the public data radio bearer to the terminal in the configuration information window length; and receiving uplink data transmitted by the terminal on the public data radio bearer.
Abstract:
In an embodiment, a video stream synchronization request is sent to a network side device; a video stream playback position synchronization parameter sent by the network side device is received, where the video stream playback position synchronization parameter includes a playback position parameter at a video stream sending moment and a system frame number (SFN) at the video stream sending moment; an SFN at a video stream receiving moment is acquired; and the playback position parameter at the video stream sending moment is adjusted according to the SFN at the video stream sending moment and the SFN at the video stream receiving moment, so as to coincide with a current playback position parameter of the network side device.
Abstract:
In an embodiment, a video stream synchronization request is sent to a network side device; a video stream playback position synchronization parameter sent by the network side device is received, where the video stream playback position synchronization parameter includes a playback position parameter at a video stream sending moment and a system frame number (SFN) at the video stream sending moment; an SFN at a video stream receiving moment is acquired; and the playback position parameter at the video stream sending moment is adjusted according to the SFN at the video stream sending moment and the SFN at the video stream receiving moment, so as to coincide with a current playback position parameter of the network side device.
Abstract:
The present invention discloses a method for quickly establishing a trunking service. The method includes: receiving, by a base station device, indication information that a user equipment has entered a trunking service mode, where the indication information is sent by an evolved packet core network device; responding to the indication information, and creating a radio resource control connection with the user equipment; responding to the indication information, and generating radio resource connection configuration information including a discontinuous reception cycle; sending the radio resource connection configuration information to the user equipment, so that the user equipment configures the discontinuous reception cycle as a discontinuous reception cycle of the user equipment itself; and when the user equipment is in the trunking service mode, retaining the radio resource control connection with the user equipment according to the radio resource connection configuration information.
Abstract:
The present invention relates to a method for synchronizing video live broadcast, which can improve user experience in a video live broadcast service. In the present invention, a video stream synchronization request is sent to a network side device; a video stream playback position synchronization parameter sent by the network side device is received, where the video stream playback position synchronization parameter includes a playback position parameter at a video stream sending moment and a system frame number SFN at the video stream sending moment; an SFN at a video stream receiving moment is acquired; and the playback position parameter at the video stream sending moment is adjusted according to the SFN at the video stream sending moment and the SFN at the video stream receiving moment, so as to coincide with a current playback position parameter of the network side device.
Abstract:
The present invention discloses a method for quickly establishing a trunking service. The method includes: receiving, by a base station device, indication information that a user equipment has entered a trunking service mode, where the indication information is sent by an evolved packet core network device; responding to the indication information, and creating a radio resource control connection with the user equipment; responding to the indication information, and generating radio resource connection configuration information including a discontinuous reception cycle; sending the radio resource connection configuration information to the user equipment, so that the user equipment configures the discontinuous reception cycle as a discontinuous reception cycle of the user equipment itself; and when the user equipment is in the trunking service mode, retaining the radio resource control connection with the user equipment according to the radio resource connection configuration information.
Abstract:
A network device and UE determine that the UE is handed over from a first network device to a second network device, and in a handover process, the first network device or the second network device sends a feedback control message to the UE to query for a quantity of fountain codes that are needed to continue to send, and the second network device continues to perform encoding according to the quantity of fountain codes that are needed to continue to send, and sends encoded data to the UE. In an uplink process, the UE sends a feedback control to the second network device and obtains a quantity of data packets that are needed to continue to encode, and sends a first data packet to the second network device. A receive end performs decoding according to the received first data packet to obtain an original data packet.
Abstract:
A data transmission method is disclosed. N streams of video data uploaded by a video capture terminal are received, where N is an integer greater than or equal to 1; loopback indication information sent by a mobility management entity or the video capture terminal is received, where the loopback indication information carries an identifier of a bearer of video data to be looped back; according to the identifier of the bearer of the video data to be looped back, the video data to be looped back corresponding to the identifier of the bearer of the video data to be looped back is confirmed; and the video data to be looped back is sent to a trunking terminal. In the data transmission method, data that the trunking terminal needs to monitor is directly looped back at the base station.
Abstract:
The present invention provides a downlink data transmission method, base station, and serving gateway on an LTE network. The method includes: learning, by an eNB, that a UE needs to be paged, when an S1 bearer is retained and a radio bearer is released; paging, by the eNB, the UE and re-establishing a radio bearer between the eNB and the UE; and sending, by the eNB, downlink data, which is received from an S-GW, to the UE through the re-established radio bearer. Embodiments of the present invention can ensure correct transmission of downlink data, and avoid data loss.