Abstract:
A semiconductor device includes an N+ type substrate, an N− type layer disposed on a first surface of the N+ type substrate and having a trench opened to a surface opposite to the surface facing the N+ type substrate, a P type region disposed in the N− type layer and disposed on a side surface of the trench, a gate electrode disposed in the trench, and a source electrode and a drain electrode insulated from the gate electrode. The N− type layer includes a P type shield region covering a bottom surface and an edge of the trench.
Abstract:
A semiconductor device may include an n− type of layer disposed at a first surface of a substrate; a p− type of region and a p+ type of region disposed at a top portion of the n− type of layer; a first electrode disposed on the p− type of region and the p+ type of region; and a second electrode disposed at a second surface of the substrate, wherein the first electrode includes a first metal layer disposed on the p− type of region and a second metal layer disposed on the first metal layer, and the first metal layer is in continuous contact with the p− type of region.
Abstract:
A semiconductor device is provide. The device includes a first n− type of layer, a second n− type of layer, and an n+ type of region sequentially disposed on a first surface of a substrate. A trench is disposed on a side surface of the second n− type of layer, a p type of region is disposed between the second n− type of layer and the trench, and a gate electrode is disposed on a bottom surface of the trench. A source electrode is disposed on the n+ type of region and a drain electrode is disposed on a second surface of the substrate. The second n− type of layer includes a first concentration layer, a second concentration layer, a third concentration layer, and a fourth concentration layer sequentially disposed on the first n− type of layer.
Abstract:
A manufacturing method of a semiconductor device is provided. The method includes sequentially forming an n− type of layer, a p type of region, and an n+ type of region on a first surface of a substrate, forming a preliminary trench in the n− type of layer by a first etching process and forming a preliminary gate insulating layer by a first thermal oxidation process. The method includes etching the lower surface of the preliminary trench and the preliminary second portion to form a trench by a second etching process and forming a gate insulating layer in the trench by a second thermal oxidation process. The gate insulating layer includes a first and second portion. The preliminary first portion is thicker than the preliminary second portion and the first portion. The first portion thickness is equal to the thickness of the second portion.
Abstract:
A semiconductor device includes: an n− type layer disposed on a first surface of an n+ type silicon carbide substrate; a first trench formed in the n− type layer; a p type region disposed on both side surfaces of the first trench; an n+ type region disposed on both side surfaces of the first trench and disposed on the n− type layer and the p type region; a gate insulating layer disposed inside the first trench; a gate electrode disposed on the gate insulating layer; an oxide layer disposed on the gate electrode; a source electrode disposed on the oxide layer and the n+ region; and a drain electrode disposed on the second surface of the n+ type silicon carbide substrate, wherein a first channel as an accumulation layer channel and a second channel as an inversion layer channel are disposed in both side surfaces of the first trench, and the first channel and the second channel are disposed to be adjacent in a horizontal direction for the first surface of the n+ type silicon carbide substrate.
Abstract:
A semiconductor device includes: an n− type layer disposed on a first surface of an n+ type silicon carbide substrate; a first trench and a second trench formed in the n− type layer and separated from each other; an n+ type region disposed between a side surface of the first trench and the side surface of the second trench and disposed on the n− type layer; a gate insulating layer disposed inside the first trench; a source insulating layer disposed inside the second trench; a gate electrode disposed on the gate insulating layer; an oxide layer disposed on the gate electrode; a source electrode disposed on the oxide layer, the n+ type region, and the source insulating layer; and a drain electrode disposed on a second surface of the n+ type silicon carbide substrate.
Abstract:
A semiconductor device includes an n+ type silicon carbide substrate, an n− type layer, an n type layer, a plurality of trenches, a p type region, an n+ type region, a gate insulating film, a gate electrode, a source electrode, a drain electrode, and a channel. The plurality of trenches is disposed in a planar matrix shape. The n+ type region is disposed in a planar mesh type with openings, surrounds each of the trenches, and is in contact with the source electrode between the trenches adjacent to each other in a planar diagonal direction. The p type region is disposed in the opening of the n+ type region in a planar mesh type.
Abstract:
A method of joining silver paste is provided. The method includes preparing silver paste comprising silver powders and lead powders and heating silver paste. The silver powders are then joined.
Abstract:
The present inventive concept has been made in an effort to improve the breakdown voltage of a silicon carbide MOSFET using a trench gate.A semiconductor device according to the present inventive concept includes a p type pillar region disposed below the trench, spaced apart from the trench or a first p type pillar region and a second p type pillar region disposed below the trench and corresponding to two corners of the trench.
Abstract:
A Schottky barrier diode and a method of manufacturing the diode are provided. The diode includes an n− type epitaxial layer disposed on a first surface of an n+ type silicon carbide substrate and a plurality of p+ regions disposed within the n− type epitaxial layer. An n+ type epitaxial layer is disposed on the n− type epitaxial layer, a Schottky electrode is disposed on the n+ type epitaxial layer, and an ohmic electrode is disposed on a second surface of the n+ type silicon carbide substrate. The n+ type epitaxial layer includes a plurality of pillar parts disposed on the n− type epitaxial layer and a plurality of openings disposed between the pillar parts and that expose the p+ regions. Each of the pillar parts includes substantially straight parts that contact the n− type epitaxial layer and substantially curved parts that extend from the substantially straight parts.