Abstract:
An engine preheating apparatus includes a waste heat recovery unit for recovering waste heat within a vehicle, and an air cooler connected to the waste heat recovery unit for receiving waste heat from the waste heat recovery unit, wherein an intake pipe in which intake air flows is connected to the air cooler in a communicating manner.
Abstract:
A storage tank includes a condenser a tank body having a storage space for storing a liquid phase working fluid, and a condenser core disposed in an interior of the tank body.
Abstract:
An apparatus for transferring recovered power of a waste heat recovery unit (WHRU) includes a hydraulic pump converting the recovered power generated by an expander of the WHRU into a hydraulic energy; and a hydraulic motor converting the hydraulic energy converted by the hydraulic pump into rotational energy and transferring the rotational energy to a vehicle engine.
Abstract:
A heat exchanger for a vehicle includes: a housing having an interior space; a header installed at one end of the housing and having a first fluid inlet manifold; a second fluid inlet manifold; and a second fluid outlet manifold; and a heat exchange core installed in the interior of the housing and having a plurality of core elements spaced apart from each other. The plurality of core elements are coupled to the header, and a plurality of first fluid passage, through which the first fluid passes, is respectively formed between the adjacent core elements. Each of the core elements has a second fluid passage, through which the second fluid flows, an inlet of the second fluid passage communicates with the second fluid inlet manifold, and an outlet of the second fluid passage communicates with the second fluid outlet manifold.
Abstract:
A recovered energy transfer apparatus of a waste heat recovery system includes an input unit connected to an expander of the waste heat recovery system and rotatable by recovered energy of the expander, and one or more output units for receiving a torque of the input unit and outputting the torque to at least one of a power generator, an engine of a vehicle, and a power take-off (PTO) for a vehicle.
Abstract:
A heat exchanger for a vehicle includes a housing having an interior space through which exhaust gas recirculation (EGR) gas passes, a first heat exchange core disposed in the interior space of the housing, a second heat exchange core disposed in the interior space of the housing and disposed on a downstream side of the first heat exchange core, and a bypass valve configured to allow the EGR gas to selectively detour the second heat exchange core.
Abstract:
A working fluid collecting apparatus for a Rankine cycle waste heat recovery system includes a storage tank for storing a working fluid circulated in a Rankine cycle therein, and a collection means for collecting the working fluid into the storage tank.
Abstract:
A waste heat recovery system has a Rankine cycle in which boilers, an expander, a condenser, and a circulation pump are installed on a circulation path in which working fluid is circulated, and the boilers are connected in series with and in parallel to the circulation path. The waste heat recovery system includes: a first and a second direction control valves installed at a top and at a bottom of the boilers to shift flow directions of the working fluid to the boilers; and a controlling unit to receive information of a vehicle and information of the waste heat recovery system to control the first and second direction control valves.
Abstract:
A diesel engine exhaust gas treatment system with enhanced nitrogen oxide purification performance includes a nitrogen oxide adsorption part nitrogen adsorbing oxide (NOx) at a temperature of less than 200° C. and desorbing the nitrogen dioxide (NO2) at a temperature of 200° C. or more; and a nitrogen oxide purification part disposed at a lower side of the nitrogen oxide adsorption part and purifying the nitrogen oxide (NOx).
Abstract:
A waste heat recovery system having a Rankine cycle in which a boiler, an expander, a condenser, and a circulation pump are installed on a circulation path in which working fluid is circulated according to the present disclosure includes: a plurality of boilers configured to be connected to the circulation path of the Rankine cycle through connection pipes between the expander and the circulation pump; and first and second direction control valves configured to be installed at the top and at the bottom of the plurality of boilers to shift flow directions of the working fluid to the plurality of boilers.