Abstract:
A separator for a fuel cell and a method for manufacturing the same comprise two sheets of metal plates integrally formed to minimize contact resistance between an upper metal plate and a lower metal plate. The method for manufacturing the separator includes steps of preparing an upper metal plate and a lower metal plate, each plate having opposing main sides, and applying a coating liquid containing a polymer composite material on both sides of the upper and lower metal plates, to form first and second composite material layers on both sides of the upper plates and third and fourth composite material layers on both sides of the lower plates. The method further includes stacking the upper metal plate on the lower metal plate, before drying the respective composite material layers, and integrally bonding the second composite material layer and the third composite material layer to form a single intermediate composite material layer.
Abstract:
A separator for a fuel cell includes: a metal base material; and a carbon coating layer formed on one surface or both surfaces of the metal base material, in which roughness Ra formed at an interface between the metal base material and the carbon coating layer may be in a range of 20 to 78 nm.
Abstract:
A structure of a fuel cell includes a sub-gasket coupled to both sides of a membrane electrode assembly; a plurality of gaskets protruding from a separator to form a flow space between the sub-gasket and the separator and supporting the sub-gasket; and a supporting member coupled to the sub-gasket at a position corresponding to the flow space, the supporting member preventing the sub-gasket from being deformed and being formed in a flat shape.
Abstract:
An apparatus for manufacturing a gas diffusion layer for fuel cells includes: a conveyer transferring a base sheet for a macroporous layer of the gas diffusion layer in one direction before water repellent coating; a nozzle disposed around the conveyer to coat the transferring base sheet with a water repellent in a fiber type or desired pattern; and a nozzle transfer unit combined with an upper end of the nozzle to transfer the nozzle along a desired trajectory.
Abstract:
A metal separator for a fuel cell stack includes an anode separator, a cathode separator, and a gasket for maintaining airtightness for a reactive gas. The anode separator and the cathode separator are integrated in one set by a bonding portion formed at a contact portion between the anode separator and the cathode separator. The gasket is bonded between the anode separator of the one set and the cathode separator of adjacent sets of the anode and cathode separators. Forming supports that function as channels through which the reactive gas and a cooling water flow and function as structural supports are formed at an inlet and an outlet of the metal separator.
Abstract:
A separator for a fuel cell includes a plurality of channels; and an inlet hole and an outlet hole formed in a first side and a second side of the plurality of channels, respectively, such that a reaction gas flows into and out from the separator to be exposed to a reaction surface including a membrane electrode assembly. The inlet hole is larger in size than the outlet hole.
Abstract:
A porous panel for a separator of a fuel cell includes a plate-shaped material and uneven lines repeatedly arranged on the porous panel in a direction crossing a gas flow direction. The porous panel is bent at the uneven lines such that upward and downward uneven portions are repeated, and through holes permitting passage of gas formed on opposite sides of each of the uneven lines have an uneven shape.
Abstract:
A fuel cell includes a separator plate including manifold holes formed in opposite sides thereof, a plurality of flow-path lands protruding between the manifold holes, a plurality of flow-path channels between the flow-path lands, and a plurality of communication holes formed between ends of the flow-path channels and the manifold holes, and a gasket coupled to the separator plate, and a plurality of separating portions protruding from the blocking portion into gaps between the neighboring communication holes so as to separate the communication holes from one another, wherein ends of the flow-path lands that do not face the separating portions extend toward the communication holes farther than do ends of the flow-path lands that face the separating portions.
Abstract:
A fuel cell includes a reaction layer including: a membrane electrode assembly (MEA); and gas diffusion layers (GDLs) each of which is disposed at both side surfaces of the MEA. A porous separation layer has one surface adhered to one surface of the reaction layer and supplied with reaction gas, and a cathode bipolar plate has a panel shape and adhered to another surface of the porous separation layer. A front end part of the cathode bipolar plate having a manifold that is supplied with the reaction gas and having a plurality of diffusion channels through which the reaction gas directs from the manifold toward the porous separation layer. The cathode bipolar plate has a partition wall channel which separates the porous separation layer, which extends in a direction in which the reaction gas flows, and which extends from the manifold in a diagonal direction.