摘要:
An energy storage device includes an electrode unit in which a cathode having a cathode lead, an anode having an anode lead, and a separator located between the cathode and the anode to separate the cathode and the anode from each other are rolled together; a housing receiving the electrode unit; an electrolyte filled in the housing; an inner terminal arranged in the housing to face the electrode unit; and an outer terminal connected to the inner terminal. A groove is formed in a side of the inner terminal, and a side protrusion is formed on an inner wall of the housing at a location corresponding to the groove.
摘要:
Disclosed is an energy storage device, in which an electrode material including an aqueous solvent, a binder and a transition metal oxide containing lithium is used to form one electrode, and an electrode material including activated carbon is used to form the other electrode. In particular, the energy storage device ensures reliability and maximum capacitance efficiency by optimizing density and thickness values of the electrode materials for the cathode electrode and the anode electrode.
摘要:
An energy storage device includes positive and negative electrodes; positive and negative lead wires connected to the positive and negative electrodes, respectively; a separator composed of unit fibers and positioned between the positive and negative electrodes to electrically insulate the positive and negative electrodes from each other; a housing accommodating the positive and negative electrodes and the separator; an electrolyte received in the housing; and positive and negative terminals connected to the positive and negative lead wires, respectively, wherein an electrolyte permeability index of the separator is larger than an electrolyte permeability index of the electrodes, and the unit fibers of the separator are arranged irregularly so that pores formed in the separator have cross sections of polygonal shapes. Using this energy storage device, the electrolyte of electrodes that gives a direct influence on electric capacity is not depleted. Also, stress failure of the separator may be prevented effectively.
摘要:
An energy storage device includes positive and negative electrodes; positive and negative lead wires connected to the positive and negative electrodes, respectively; a separator composed of unit fibers and positioned between the positive and negative electrodes to electrically insulate the positive and negative electrodes from each other; a housing accommodating the positive and negative electrodes and the separator; an electrolyte received in the housing; and positive and negative terminals connected to the positive and negative lead wires, respectively, wherein an electrolyte permeability index of the separator is larger than an electrolyte permeability index of the electrodes, and the unit fibers of the separator are arranged irregularly so that pores formed in the separator have cross sections of polygonal shapes. Using this energy storage device, the electrolyte of electrodes that gives a direct influence on electric capacity is not depleted. Also, stress failure of the separator may be prevented effectively.
摘要:
A digital doorlock having an ultra capacitor is used as an emergency power. The digital doorlock includes a power source for supplying an ordinary power; a key recognition means for receiving a key required for opening a doorlock from outside; a doorlock opening/closing means for opening/closing the doorlock by comparing an input key with a key stored therein; an emergency power generating means for generating an emergency power and converting the generated power suitably for charging capacitors; and a capacitor unit provided with capacitors to store the electric energy applied from the emergency power generating means into the capacitors and supplying the energy stored in the capacitors to the doorlock opening/closing means in case the power supply is not able to supply power. This doorlock apparatus has a simplified configuration since a separate emergency opening/closing device for preparation against a complete consumption of the battery is not used.
摘要:
A connecting structure of a lead wire is electrically connected to an electrode in which a polarized electrode layer is formed on a surface of a current collector plate. A region of the electrode, to which the lead wire is to be joined, is free from the polarized electrode layer. The lead wire is joined to the current collector plate by means of stitching and then compressed thereto. This connecting structure may keep a capacitance of a capacitor and improve contact reliability. An electric double layer capacitor having the structure and a method for manufacturing the capacitor are also provided.
摘要:
A connecting structure of a lead wire is electrically connected to an electrode in which a polarized electrode layer is formed on a surface of a current collector plate. A region of the electrode, to which the lead wire is to be joined, is free from the polarized electrode layer. The lead wire is joined to the current collector plate by means of stitching and then compressed thereto. This connecting structure may keep a capacitance of a capacitor and improve contact reliability. An electric double layer capacitor having the structure and a method for manufacturing the capacitor are also provided.