Abstract:
A battery pack includes a case which includes at least one battery module having a plurality of battery cells, a bottom plate where the battery module is placed, side plates and erected around the bottom plate, and a top plate provided in the upper ends of the side plates and to face the bottom plate, and a bracket provided in the side plates and to fix the case to a vehicle loading portion, and a partitioning member which is provided in the case and transfers a force added to the top plate to the bracket.
Abstract:
The present disclosure relates to a lithium-ion battery module including a housing having a base, a battery cell in the housing, and a battery module terminal coupled to the battery cell via an electrical pathway, wherein the battery module terminal provides an electrical output when coupled to an electrical load, and wherein the electrical pathway is defined by a first portion, a second portion, and an interconnecting portion connecting the first and second portions. The first portion has a plurality of first conductive components coupled to one another within first connection planes using a first conductive material, and the first connection planes are substantially parallel to the base. The second portion has a plurality of second conductive components coupled to one another within second connection planes using a second conductive material, different from the first conductive material, and the second connection planes are crosswise to the first connection planes.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure includes a battery module having a group of electrically interconnected electrochemical cells, a battery module terminal configured to be coupled to a load for powering the load, and an electrical path extending between the group of electrically interconnected electrochemical cells and the battery module terminal, where the electrical path includes a bus bar bridge. The battery module also includes a housing, where the group of electrically interconnected electrochemical cells is disposed within the housing, and the housing includes a pair of extensions positioned along sides of the bus bar bridge and configured to retain the bus bar bridge and to block movement of the bus bar bridge in at least one direction.
Abstract:
A rechargeable battery for improving stability by quickly transmitting generated gas to a vent plate when an internal short circuit occurs, the rechargeable battery including: an electrode assembly including a first electrode, a second electrode, and a separator between the first and second electrodes; a case containing the electrode assembly; and a cap plate sealing an opening of the case and including an electrode terminal connected to the electrode assembly, the cap plate further including a round unit arranged at an inner side of the case.
Abstract:
A low profile collector and seal assembly for sealing the open end of a container of an electrochemical cell and providing venting of pressurized gases. An electrochemical cell has a can with a closed bottom end and an open top end, positive and negative electrodes disposed in the can, and a collector and seal assembly disposed in the open top end of the can for closing the open top end of the can. The collector and seal assembly includes a current collector and an annular seal that move relative to each other from a sealed position to a vented position when the internal cell pressure reaches a pressure threshold to vent pressurized gases.
Abstract:
The purpose of the present invention is to allow a gas to be stably discharged from a cracking valve even if a battery lid is deformed toward a wound group side. In a rectangular secondary battery of the present invention, a curved surface portion of a flat wound group is disposed on the side of an opening of a battery can, and the opening is sealed with a battery lid having a cracking valve and a liquid injection port. At least a protruding portion having a facing surface positioned on a curved surface portion side with respect to the cracking valve is disposed on the battery lid between the liquid injection port and the cracking valve.
Abstract:
The battery is sealed by a sealing member including a safety valve for exhausting the gas generated in the battery to the outside of the battery when the pressure in the battery is increased. A part of the sealing member is formed of a member having a melting point lower than that of high-temperature gas generated in the abnormal time and having a ratio of an area of an opening of the battery case to an area of a gas exhaust hole is 3.0×10−5 or more and 9.1×10−3 or less.