摘要:
Providing for a new combination of non-volatile memory architecture and memory processing technology is described herein. By way of example, disclosed is a parallel bitline semiconductor architecture coupled with a channel-based processing technology. The channel based processing technology provides fast program/erase times, relatively high density and good scalability. Furthermore, the parallel bitline architecture enables very fast read times comparable with drain-based tunneling processes, achieving a combination of fast program, erase and read times far better than conventional non-volatile memories.
摘要:
Providing for a serial array memory transistor architecture that achieves high read speeds compared with conventional serial array memory is described herein. By way of example, the serial array memory can be connected to and can drive a gate voltage of a small capacitance pass transistor, to facilitate sensing memory transistors of the serial array. The pass transistor modulates current flow or voltage at an adjacent metal bitline, which can be utilized to sense a program or erase state(s) of the memory transistors. Due to the small capacitance of the pass transistor, read latency for the serial array can be significantly lower than conventional serial array memory (e.g., NAND memory). Further, various mechanisms for forming an amplifier region of the serial array memory comprising discrete pass transistor are described to facilitate efficient fabrication of the serial array memory transistor architecture.
摘要:
Providing for a serial array memory transistor architecture that achieves high read speeds compared with conventional serial array memory is described herein. By way of example, the serial array memory can be connected to and can drive a gate voltage of a small capacitance pass transistor, to facilitate sensing memory transistors of the serial array. The pass transistor modulates current flow or voltage at an adjacent metal bitline, which can be utilized to sense a program or erase state(s) of the memory transistors. Due to the small capacitance of the pass transistor, read latency for the serial array can be significantly lower than conventional serial array memory (e.g., NAND memory). Further, various mechanisms for forming an amplifier region of the serial array memory comprising discrete pass transistor are described to facilitate efficient fabrication of the serial array memory transistor architecture.
摘要:
Providing for a serial array memory transistor architecture that achieves high read speeds compared with conventional serial array memory is described herein. By way of example, the serial array memory can be connected to and can drive a gate voltage of a small capacitance pass transistor, to facilitate sensing memory transistors of the serial array. The pass transistor modulates current flow or voltage at an adjacent metal bitline, which can be utilized to sense a program or erase state(s) of the memory transistors. Due to the small capacitance of the pass transistor, read latency for the serial array can be significantly lower than conventional serial array memory (e.g., NAND memory). Further, various mechanisms for forming an amplifier region of the serial array memory comprising discrete pass transistor are described to facilitate efficient fabrication of the serial array memory transistor architecture.
摘要:
Providing for a new combination of non-volatile memory architecture and memory processing technology is described herein. By way of example, disclosed is a parallel bitline semiconductor architecture coupled with a channel-based processing technology. The channel based processing technology provides fast program/erase times, relatively high density and good scalability. Furthermore, the parallel bitline architecture enables very fast read times comparable with drain-based tunneling processes, achieving a combination of fast program, erase and read times far better than conventional non-volatile memories.
摘要:
Providing for a serial array memory transistor architecture that achieves high read speeds compared with conventional serial array memory is described herein. By way of example, the serial array memory can be connected to and can drive a gate voltage of a small capacitance pass transistor, to facilitate sensing memory transistors of the serial array. The pass transistor modulates current flow or voltage at an adjacent metal bitline, which can be utilized to sense a program or erase state(s) of the memory transistors. Due to the small capacitance of the pass transistor, read latency for the serial array can be significantly lower than conventional serial array memory (e.g., NAND memory). Further, various mechanisms for forming an amplifier region of the serial array memory comprising discrete pass transistor are described to facilitate efficient fabrication of the serial array memory transistor architecture.
摘要:
Providing a serial array semiconductor architecture achieving fast program, erase and read times is disclosed herein. By way of example, a memory architecture can comprise a serial array of semiconductors coupled to a metal bitline of an electronic memory device at one end of the array, and a gate of a pass transistor at an opposite end of the array. Furthermore, a second metal bitline is coupled to a drain of the pass transistor. A sensing circuit that measures current or voltage at the second metal bitline, which is modulated by a gate potential of the pass transistor, can determine a state of transistors of the serial array. Because of low capacitance of the pass transistor, the serial array can charge or discharge the gate of the pass transistor quickly, resulting in read times that are significantly reduced as compared with conventional serial semiconductor array devices.
摘要:
Providing a serial array semiconductor architecture achieving fast program, erase and read times is disclosed herein. By way of example, a memory architecture can comprise a serial array of semiconductors coupled to a metal bitline of an electronic memory device at one end of the array, and a gate of a pass transistor at an opposite end of the array. Furthermore, a second metal bitline is coupled to a drain of the pass transistor. A sensing circuit that measures current or voltage at the second metal bitline, which is modulated by a gate potential of the pass transistor, can determine a state of transistors of the serial array. Because of low capacitance of the pass transistor, the serial array can charge or discharge the gate of the pass transistor quickly, resulting in read times that are significantly reduced as compared with conventional serial semiconductor array devices.
摘要:
In a memory device, a substrate has a plurality of source/drain regions in the substrate. Between the source/drain regions are trenches filled with oxide. Individual bit lines in the form of conductive regions are provided in the substrate, each bit line being under and running along the oxide in a trench. Each bit line connects to source/drain regions by means of connecting conductive regions extending from that bit line to source/drain regions.
摘要:
A method of forming flash memory EEPROM devices having a low energy source implant and a high-energy VSS connection implant such that the intrinsic source defect density is reduced and the VSs resistance is low. The source regions are implanted with a low energy, low dosage dopant ions and the VSS regions are implanted with a high energy, high dosage dopant ions.