摘要:
The present disclosure relates to downhole fluid additives including a clay, a hydroxylated polymer, a cation, and water. The disclosure further relates to downhole fluids, including drilling fluids, spaces, cements, and proppant delivery fluids containing such as downhole fluid additive and methods of using such fluids. The downhole fluid additive may have any of a variety of functions in the downhole fluid and may confer any of a variety of properties upon it, such as salt tolerance or desired viscosities even at high downhole temperatures.
摘要:
The present disclosure relates to downhole fluid additives including a clay, a hydroxylated polymer, a cation, and water. The disclosure further relates to downhole fluids, including drilling fluids, spaces, cements, and proppant delivery fluids containing such as downhole fluid additive and methods of using such fluids. The downhole fluid additive may have any of a variety of functions in the downhole fluid and may confer any of a variety of properties upon it, such as salt tolerance or desired viscosities even at high downhole temperatures.
摘要:
Fluid additives suitable for use in a wellbore (e.g., a liquid comprising an aqueous miscible fluid, a liquid surfactant, or both) may be converted into a liquid-infiltrated porous silica that is a flowable bulk solid. The flowable bulk solid may then be handled and stored as a traditional solid wellbore additive. For example, the flowable bulk solid may be added to an aqueous fluid to produce a wellbore fluid that is then introduced into a wellbore penetrating a subterranean formation.
摘要:
Methods for forming a fluid seal in a subterranean formation may comprise: providing a treatment fluid comprising an aqueous carrier fluid, a sealant composition, and a crosslinked polysaccharide composition. The treatment fluid is introduced into a wellbore penetrating a subterranean formation and the crosslinked polysaccharide composition is formed into a viscosified gel in the wellbore. The viscosified gel substantially spans the diameter of the wellbore and holds the sealant composition in place. After forming the crosslinked polysaccharide composition into a viscosified gel in the wellbore, forming a fluid seal in the wellbore with the sealant composition.
摘要:
The present disclosure relates to elastomer-thermally conductive carbon fiber compositions for use in seals for roller-cone drill bits. The present disclosure further relates to seals formed from such compositions and to roller-cone drill bits containing such seals.
摘要:
Embodiments herein include methods comprising providing a sealant composition comprising an aqueous base fluid, a crosslinkable polymer composition, and a density segregation prevention agent, wherein the crosslinkable polymer composition comprises a crosslinkable organic polymer and a crosslinker; introducing a particulate density reducing agent into the sealant composition, wherein the particulate density reducing agent causes the sealant composition to adopt a reduced density as compared to the sealant composition without the particulate density reducing agent, thereby creating a reduced density sealant composition; introducing the reduced density sealant composition into a subterranean formation; and crosslinking the reduced density sealant composition into a gel to form a seal in the subterranean formation.
摘要:
Methods and compositions for a treatment fluid composition are disclosed for use within a subterranean formation, comprising: a degradable diverting agent, and a Schiff base comprising a degradation accelerator. The treatment fluid may be introduced into a formation and the Schiff base allowed to hydrolytically release the degradation accelerator, allowing the degradation accelerator to degrade the degradable diverting agent.
摘要:
Embodiments herein include a method comprising providing a self-sealing cement slurry comprising an aqueous base fluid, a cementitious material, and a vulcanized oil and water swellable particulate composite, wherein the vulcanized oil and water swellable particulate composite comprises an elastomer, a crosslinked water swellable superabsorbent polymer, and a hydrophobically modified water-soluble polymer; introducing the self-sealing cement slurry into a subterranean formation; and allowing the self-sealing cement slurry to set, wherein the vulcanized oil and water swellable particulate composite is capable of swelling in the presence of a non-aqueous fluid and an aqueous fluid to reduce the permeability of fluid flowpaths in the set self-sealing cement slurry upon loss of structural integrity.
摘要:
Gellable treatment fluids comprising: an aqueous base fluid; a base polymer comprising an acrylamide monomer unit; an organic crosslinking agent comprising a crosslinkable polymer; and a gel-time modifier. The organic crosslinking agent comprising a crosslinkable selected from the group consisting of polyethyleneimine, polyvinylamine, any derivative thereof, any salt thereof, and any combination thereof. The gel-time modifier comprising at least one amino group, any salt thereof, any derivative thereof, or any combination thereof.
摘要:
Some embodiments herein comprise providing a treatment fluid comprising an aqueous base fluid, an acid, a permeability modifier, and a permeability modifier deactivator; providing an injection well having a first treatment zone comprising a first aqueous formation permeability, wherein the first treatment zone comprises formation damage; introducing the treatment fluid into the injection well, so as to contact the acid, the permeability modifier, and the permeability modifier deactivator with the first treatment zone; reacting the acid with the first treatment zone so as to repair a portion of the formation damage; reacting the permeability modifier with the first treatment zone so as to cause the first aqueous formation permeability to adopt a second, lesser aqueous formation permeability; and contacting the permeability modifier deactivator with the permeability modifier so as to deactivate the permeability modifier and restore the first treatment zone to about the first aqueous formation permeability.