Abstract:
An electrical terminal device adapted to mount to a structure, and including a electrically non-conductive substructure, an electrically non-conductive cover, a heat resistant shroud, and an electric terminal. The substructure is in contact with the structure. The cover is engaged to the substructure. The substructure and the cover define a chamber, and the substructure defines, at least in-part, a sealed passage in communication with the chamber. The heat resistant shroud substantially covers the cover. The cover is substantially located between the shroud and the substructure. The electric terminal is located in the chamber and is attached to the substructure.
Abstract:
A nanocomposite structure includes a nanocomposite. The nanocomposite includes a bulk matrix phase and a nanophase filler disposed within the bulk matrix phase. The nanophase has a plurality of nanotubes including a material with thermal conductivity that is greater than the thermal conductivity of the bulk matrix phase of the nanocomposite. An electrical device includes a conductor in thermal communication with the nanocomposite structure formed from the nanocomposite.
Abstract:
An acoustic absorption material may comprise an outer layer and a first layer of batting material proximate to the outer layer. A first layer of room temperature vulcanized silicone (RTV) may be proximate to the batting material. A second layer of batting material may be proximate to the first layer of RTV opposite the first layer of batting material.
Abstract:
Potted electronic assemblies are disclosed along with methods of making and cooling them. The electronic assemblies include a conductive heat transfer medium disposed between and in contact with an electronic component and a heat sink. The conductive heat transfer medium has a hardened fluid polymer material that includes boron nitride nanotubes dispersed therein.
Abstract:
An electrical terminal device adapted to mount to a structure, and including a electrically non-conductive substructure, an electrically non-conductive cover, a heat resistant shroud, and an electric terminal. The substructure is in contact with the structure. The cover is engaged to the substructure. The substructure and the cover define a chamber, and the substructure defines, at least in-part, a sealed passage in communication with the chamber. The heat resistant shroud substantially covers the cover. The cover is substantially located between the shroud and the substructure. The electric terminal is located in the chamber and is attached to the substructure.