摘要:
Vertical buried emitter heterojunction bipolar transistors having greatly reduced emitter to base junction area and collector dimensions are fabricated in a gallium arsenide substrate to form an integrated circuit structure. The ability to scale these critical dimensions is made possible by forming a portion of the base along the side walls and bottom of a trench which has been etched in the upper two layers of a layered gallium arsenide structure. The base is formed by implanting beryllium into the surface of an upper layer, the trench sidewalls which are formed in an undoped layer, and the bottom of the trench which is an undoped layer formed on the buried emitter. A GaAs collector layer having reduced lateral dimensions is deposited in the trench and in part, on the surface of the layered structure. Since only a small portion of the base region (the bottom of the trench) is in direct contact with the heavily doped emitter layer, the emitter to base junction area can be significantly reduced. This in turn reduces the capacitance associated with this junction and correspondingly improves device operating speed. By forming a portion of the collector in the trench, the lateral dimensions of the transistor may be reduced and higher levels of device integration are made possible.
摘要:
Vertical buried emitter heterojunction bipolar transistors having greatly reduced emitter to base junction area and collector dimensions are fabricated in a gallium arsenide substrate to form an integrated circuit structure. The ability to scale these critical dimensions is made possible by forming a portion of the base along the side walls and bottom of a trench which has been etched in the upper two layers of a layered gallium arsenide structure. The base is formed by implanting beryllium into the surface of an upper layer, the trench sidewalls which are formed in an undoped layer, and the bottom of the trench which is an undoped layer formed on the buried emitter. A GaAs collector layer having reduced lateral dimensions is deposited in the trench and in part, on the surface of the layered structure. Since only a small portion of the base region (the bottom of the trench) is in direct contact with the heavily doped emitter layer, the emitter to base junction area can be significantly reduced. This in turn reduces the capacitance associated with this junction and correspondingly improves device operating speed. By forming a portion of the collector in the trench, the lateral dimensions of the transistor may be reduced and higher levels of device integration are made possible.
摘要:
This is a method of forming a bipolar transistor comprising: forming a subcollector layer, having a doping type and a doping level, on a substrate; forming a first layer, of the same doping type and a lower doping level than the subcollector layer, over the subcollector layer; increasing the doping level of first and second regions of the first layer; forming a second layer, of the same doping type and a lower doping level than the subcollector layer, over the first layer; increasing the doping level of a first region of the second layer which is over the first region of the first layer, whereby the subcollector layer, the first region of the first layer and the first region of the second layer are the collector of the transistor; forming a base layer over the second layer of an opposite doping type than the subcollector layer; and forming an emitter layer of the same doping type as the subcollector layer over the base layer. Other devices and methods are also disclosed.
摘要:
Complementary heterostructure field effect transistors (30) with complementary devices having complementary gates (40, 50) and threshold adjusting dopings are disclosed. Preferred embodiment devices include a p.sup.+ gate (50) formed by diffusion of dopants to convert n.sup.+ gate material to p.sup.+, and a pulse-doped layer adjacent the two-dimensional carrier gas channels to adjust threshold voltages. Further preferred embodiments have the conductivity-type converted gate (50) containing a residual layer of unconverted n.sup.+ which cooperates with the pulse-doped layer threshold shifting to yield threshold voltages which are small and positive for n-channel and small and negative for p-channel devices.
摘要:
Complementary heterostructure field effect transistors (30) with complementary devices having complementary gates (40, 50) and threshold adjusting dopings are disclosed. Preferred embodiment devices include a p.sup.+ gate (50) formed by diffusion of dopant to convert n.sup.+ gate material to p.sup.+, and a pulse-doped layer adjacent the two-dimensional carrier gas channels to adjust threshold voltages. Further preferred embodiments have the conductivity-type converted gate (50) containing a residual layer of unconverted n.sup.+ which cooperates with the pulse-doped layer threshold shifting to yield threshold voltages which are small and positive for n-channel and small and negative for p-channel devices.
摘要:
A circuit composed of a circuit board of crystalline elemental silicon slice and circuit components in the form of semiconductor integrated circuits therein which are preferably formed of a Group III-V compound. Signals from each of the integrated circuits are transmitted to other integrated circuits on the board or externally of the board either by conventional printed conductors on the board or by a laser formed in each integrated circuit at each output terminal thereon which transmits light signals along light transmitting members in the silicon board to detectors at the input locations on other ones of the integrated circuits on the board for external to the board. The light signal is transferred from an integrated circuit output to an integrated circuit input or to a device external to the board by means of light transmitting members. These light transmitting members may be light conducting waveguides positioned either on the surface of the board or in grooves formed therein. Alternatively, the light transmitting members can be silicon dioxide paths formed in the silicon circuit board by selective oxidation of the silicon board to form silicon dioxide light transmitting paths therein. Each light transmitting path is coupled between a light emitting output from an integrated circuit and a light receiving input of another integrated circuit on the same or a different semiconductor chip or travels to the edge of the circuit board for transmission external of the board.
摘要:
A vertical transistor (70) comprising a first semiconductor layer (14) of a first conductive type. A gate structure (32) of a second conductive type disposed on the first semiconductor layer (14). The gate structure (32) may include a plurality of gates (38) separated by channels (40). A second semiconductor layer (50) of the first conductive type may be disposed over the gate structure (32) and in the channels (40). An arresting element (36) may be disposed between and upper surface of the gates (38) and the second semiconductor layer (50). A void (52) may be formed in the second semiconductor layer (50) over the gate (38).
摘要:
A method of self aligning an emitter contact includes forming a base layer (18) on a portion of a collector layer (16). An interface layer (22) is formed on the base layer (18) such that a portion of the base layer (18) remains exposed. An emitter layer (24) is formed on the collector layer (16), the interface layer (22), and the exposed portion of the base layer (18). An emitter cap layer (26) is formed on the emitter layer (24) over the previously exposed area of the base layer (18). An insulating layer (28) is formed on the interface layer (22). An emitter contact (36) is formed on the emitter cap layer (26) at the previously exposed area of the base layer (18). The insulating layer (28) isolates the emitter contact (36) from the base layer (18) and a subsequently formed base contact (38). The insulating layer (28) ensures isolation between the emitter contact (36) and the base contact (38) despite misalignment of the emitter contact (36) during formation.
摘要:
A method of fabricating a semiplanar heterojunction bipolar transistor (10) includes forming a subcollector layer (12) and a collector layer (16) onto a substrate layer (14). A collector implant plug (18) is selectively implanted to connect the subcollector layer (12) to the surface of the heterojunction bipolar transistor (10). A second epitaxial growth process causes a base layer (22), an emitter layer (24), and an emitter cap layer (26) to form on the collector layer (16) and the collector implant plug (18). By this process, the base layer (22) is not exposed to subsequent harmful fabrication steps. A base plug region (28) is selectively implanted to connect the base layer (22) to the surface of the heterojunction bipolar transistor (10). A base contact (32) and an emitter contact (30) are selectively formed within the heterojunction region on the base plug region (28) and the emitter cap layer (26), respectively. Lateral parasitic diodes between the base contact (32) and the emitter contact (30) are etched away to isolate the base contact (32) from the emitter contact (30). The emitter cap layer (26), the emitter layer (24), and the base layer (22) are removed from the vicinity of the collector implant plug (18) to allow formation of the collector contact (34).
摘要:
This is a method of forming a vertical transistor device. The method comprises: forming a n-type source layer 12; forming a p+ carbon doped gate layer 14; forming a gate structure from the gate layer; and forming a n-type drain layer 16 over the gate structure to provide a buried carbon doped gate structure. The buried carbon doped gate structure provides a very small device with favorable on-resistance, junction capacitance, gate resistance, and gate driving voltage. Other devices and methods are also disclosed.