摘要:
The present invention relates to a device for individually driving OLED/LED elements of an OLED/LED string, comprising for each OLED/LED element of the string: a controllable shunting switch (22, 42) coupled with the respective OLED/LED element (14, 15), switch controller means (30, 44) for controlling said shunting switch (22, 42) and having a control output port coupled to said switch (22, 42), a data input port and a clock input port, level shifting means (32) assigned to said switch controller means (30, 44) and adapted to bring the control input data to a level sufficient to be accepted by the switch controller means (30, 44) during a programming mode and to allow the control of said shunting switch (22, 42). Said switch controller means (30, 44) of said OLED/LED elements (14, 15) are provided to form a serial-to-parallel converter means (31).
摘要:
The invention relates to a driver device for a load (11), particularly an LED/OLED unit (12; 20, 22), comprising a shunting switch (30) parallel to the load, a control unit (14, 26) for controlling the shunting switch (30), an energy storage element (40) adapted to supply energy to at least the control unit (14, 26), and a recharge control circuitry (46) arranged in series with the energy storage element (40), the series connection of energy storage element (40) and recharge control circuitry (46) being provided parallel to the shunting switch (30), wherein said control unit (14, 26) is adapted to activate said recharge control circuitry (46) and to switch said shunting switch (30) off, when said energy storage element (40) is to be recharged. The invention also relates to a method of driving a load (11).
摘要:
The present invention relates to a device for individually driving OLED/LED elements of an OLED/LED string, comprising for each OLED/LED element of the string: a controllable shunting switch (22, 42) coupled with the respective OLED/LED element (14, 15), switch controller means (30, 44) for controlling said shunting switch (22, 42) and having a control output port coupled to said switch (22, 42), a data input port and a clock input port, level shifting means (32) assigned to said switch controller means (30, 44) and adapted to bring the control input data to a level sufficient to be accepted by the switch controller means (30, 44) during a programming mode and to allow the control of said shunting switch (22, 42). Said switch controller means (30, 44) of said OLED/LED elements (14, 15) are provided to form a serial-to-parallel converter means (31).
摘要:
The invention relates to a driver device for a load (11), particularly an LED/OLED unit (12; 20, 22), comprising a shunting switch (30) parallel to the load, a control unit (14, 26) for controlling the shunting switch (30), an energy storage element (40) adapted to supply energy to at least the control unit (14, 26), and a recharge control circuitry (46) arranged in series with the energy storage element (40), the series connection of energy storage element (40) and recharge control circuitry (46) being provided parallel to the shunting switch (30), wherein said control unit (14, 26) is adapted to activate said recharge control circuitry (46) and to switch said shunting switch (30) off, when said energy storage element (40) is to be recharged. The invention also relates to a method of driving a load (11).
摘要:
The invention relates an electrical device for providing an output depending on an electrical input. The electrical device (1) is adapted to provide a constant output, if the electrical input is in a first electrical input range, and a dependent output, if the electrical input is in a second electrical input range, wherein the dependent output depends on the electrical input. The output can therefore remain constant, even if the electrical input, which is preferentially a DC grid voltage, fluctuates within the first electrical input range. Moreover, in the second electrical input range the output can be controlled by just controlling the electrical input like the DC grid voltage, without necessarily requiring an additional control construction of the electrical device. A resistance against fluctuations of the electrical input and a controllability of the output can therefore be realized in a relatively simple way.
摘要:
An average power consumption of receiving units (3,5,7) for controlling apparatuses (4,6,8) in response to operation control signals from transmitting units (2) may be reduced by introducing devices (1,21) for controlling the power consumption of the receiving units (3,5,7) in response to detections of states of the apparatuses (4,6,8). The devices (1) may comprise controllers (30) for controlling the power consumption in a wireless, non-wireless, physical and/or logical manner. The devices (1) may comprise monitors (33) for monitoring power consumption, currents and/or voltages at the receiving units (3,5,7) and/or the apparatuses (4,6,8). The devices (1) may comprise receivers (40), detectors (41), converters (42) and transmitters (43) for receiving the operation control signals, detecting the states of the apparatuses (4,6,8), converting the operation control signals into converted signals, and transmitting the operation control signals or the converted signals to the receiving units (3,5,7) for controlling the power consumption of the receiving units (3,5,7) via the transmitted signals, wherein the transmitted signals correspond to power control signals.
摘要:
The invention relates an electrical device for providing an output depending on an electrical input. The electrical device (1) is adapted to provide a constant output, if the electrical input is in a first electrical input range, and a dependent output, if the electrical input is in a second electrical input range, wherein the dependent output depends on the electrical input. The output can therefore remain constant, even if the electrical input, which is preferentially a DC grid voltage, fluctuates within the first electrical input range. Moreover, in the second electrical input range the output can be controlled by just controlling the electrical input like the DC grid voltage, without necessarily requiring an additional control construction of the electrical device. A resistance against fluctuations of the electrical input and a controllability of the output can therefore be realized in a relatively simple way.
摘要:
The invention describes a method of controlling a lighting of a room (1) in accordance with a still or moving image (2) projected onto a projection surface (3s), which method comprises optically measuring a number of characteristic features (f) of the projected image and adjusting the room lighting of the room on the basis of the measured characteristic features (f). Furthermore, the invention relates to a system for controlling the lighting of a room (1) in accordance with an image (2) projected onto a projection surface (3s), to a control device (9) for use in such a system, and to a projection screen device (3) for use in such a system. Moreover, the invention relates to a room lighting system (1) for lighting of a room in accordance with an image (2) projected onto a projection surface (3s).
摘要:
The invention relates to an apparatus (1) for powering an electrical consumer (3, 4, 5) via a data connection (6, 7, 8). The apparatus comprises a power supply (2) for supplying power to the electrical consumer via the data connection, a data receiving unit (9) for receiving data to be sent to the electrical consumer, and a controller (10) for activating the supply of power to the electrical consumer via the data connection, if data to be sent to the electrical consumer have been received and the supply of power to the electrical consumer is deactivated. The electrical consumer itself does therefore not need to receive power from the apparatus, in order to stay alert to be able to react on data connection activity, thereby reducing the power consumption.
摘要:
The invention relates to a management unit (1) and a method for operating such a unit in a Power-over-Ethernet (PoE) installation. The management unit (1) comprises at least one first port (12a) to which an external device (2) can be connected, and it is adapted to control the power delivered at a first port (12a) in dependence on predetermined switching rules.