摘要:
A catalyst system and method of making the same is taught for treating exhaust gases from an internal combustion engine. A catalyst system includes a substrate and a washcoat on the substrate. The washcoat is formed of zirconia. A catalyst is placed on the washcoat consisting of rhodium metal or rhodium metal with another catalyst metal. By using zirconia as a washcoat, the rhodium is not dissolved into the washcoat during periods when the catalyst system is subjected to high temperature oxidizing conditions, as is the case when a gamma alumina washcoat is used.
摘要:
This invention is directed to an equilibrium catalyst for treating oxides of nitrogen, carbon monoxide and unburned hydrocarbons found in an exhaust gas stream from an internal combustion engine. The catalyst includes a substrate, a selective three-way equilibrium catalyst, an oxygen storage material component for maintaining the activity of the equilibrium catalyst during momentary excursions of the exhaust gas stream into oxygen rich conditions, an active metal component for a water gas and steam reforming process which maintains the overall activity of the equilibrium catalyst when treating an exhaust gas stream deficient in oxygen, and a component for oxidation of hydrocarbons and carbon monoxides when the exhaust gas stream is developed from the burning of air mixtures of about stoichiometric proportions.
摘要:
This disclosure teaches a stabilized rhenium catalyst in which the rhenium does not volatilize away from a catalyst substrate when oxidized to its higher valence state. The rhenium is protected by having sufficient refractory oxide available on the catalyst substrate to trap any higher oxide of rhenium developed when the rhenium is oxidized.
摘要:
This disclosure teaches a stabilized rhenium catalyst in which the rhenium does not volatilize away from a catalyst substrate when oxidized to its higher valence state. The rhenium is protected by having sufficient refractory oxide available on the catalyst substrate to trap any higher oxide of rhenium developed when the rhenium is oxidized.
摘要:
The specification teaches a method of enriching a catalyst system in which both platinum and rhodium are present. The enrichment increases the amount of rhodium which is actively available for use as a catalyst. The enrichment is brought about by thermally aging the catalyst system in an oxidizing atmosphere by heating it to a temperature in a range from 650.degree. C. to 875.degree. C. for a period of at least two hours. A thermal aging at a temperature of about 800.degree. C. for a period of 4 to 8 hours is preferred.
摘要:
A catalyst system is taught for treating exhaust gases from an internal combustion engine. The catalyst system includes a substrate and a wash coat on the substrate. The wash coat is formed substantially of alpha phase alumina. A catalyst is placed on the wash coat consisting of rhodium metal or rhodium metal with another catalyst metal. By using alpha phase alumina as the wash coat, the rhodium is not dissolved into the wash coat during periods when the catalyst system is subjected to high temperature oxidizing conditions.
摘要:
Under oxidizing conditions, a ruthenium catalyst system which is not protected will lose ruthenium by volatilization. A method is taught in this specification for stabilizing a ruthenium catalyst system against such volatilization under oxidizing conditions. The method is carried out by applying to a catalyst substrate a ruthenium catalyst system in which the catalytic material under oxidizing conditions is of the type La.sup.+3 Ni.sub.x.sup.+3 Ru.sub.1-x.sup.+3 O.sub.3 wherein x is in the range from 0.1 to 0.9.
摘要:
This catalyst system simultaneously removes ammonia and enhances net NO, conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
摘要:
This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
摘要:
Sacrificial use of amino polymers to modify the crystal structure of platinum derived from chlorine compounds in a method to oxidize hydrocarbons, comprising: (a) preparing a polymer modifier by controllably reacting amine with epoxy resin to form a soluble adduct and adding to the adduct a solvent to form a homogeneous amino polymer solution; (b) coating a granular support material with platinum/chlorine compounds; and (c) mixing the coated support material with the polymer solution and heating the mixture to evaporate the solvent and to decompose and eliminate the polymer, leaving the coated granules with platinum in a morphologically changed condition devoid of amino polymer but having enhanced catalytic effectiveness for promoting oxidation of hydrocarbons. The amine is of a primary or secondary amine, preferably the hydroxyethyl group. The epoxy is a soluble resin comprising two or more epoxide groups per molecule, i.e., dihydric phenol or dihydric alcohol. The polymer modifier is preferably a soluble amino polymer having a molecular weight of 500-50,000 and advantageously is 50% or more by weight of the solution.