摘要:
A method for fabricating a nonvolatile charge trap memory device is described. The method includes forming a first oxide layer on a surface of a substrate. The first oxide layer is exposed to a first decoupled plasma nitridation process having a first bias. Subsequently, a charge-trapping layer is formed on the first oxide layer. The charge-trapping layer is exposed to an oxidation process and then to a second decoupled plasma nitridation process having a second, different, bias.
摘要:
A method for fabricating a nonvolatile charge trap memory device is described. The method includes forming a first oxide layer on a surface of a substrate. The first oxide layer is exposed to a first decoupled plasma nitridation process having a first bias. Subsequently, a charge-trapping layer is formed on the first oxide layer. The charge-trapping layer is exposed to an oxidation process and then to a second decoupled plasma nitridation process having a second, different, bias.
摘要:
An embodiment of a nonvolatile charge trap memory device is described. In one embodiment, the device comprises a channel comprising silicon overlying a surface on a substrate electrically connecting a first diffusion region and a second diffusion region of the memory device, and a gate stack intersecting and overlying at least a portion of the channel, the gate stack comprising a tunnel oxide abutting the channel, a split charge-trapping region abutting the tunnel oxide, and a multi-layer blocking dielectric abutting the split charge-trapping region. The split charge-trapping region includes a first charge-trapping layer comprising a nitride closer to the tunnel oxide, and a second charge-trapping layer comprising a nitride overlying the first charge-trapping layer. The multi-layer blocking dielectric comprises at least a high-K dielectric layer.
摘要:
Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the method comprises: (i) forming an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate in at least a first region in which a non-volatile memory transistor is to be formed, the ONO dielectric stack including a multi-layer charge storage layer; (ii) forming an oxide layer on the surface of the substrate in a second region in which a metal oxide semiconductor (MOS) logic transistor is to be formed; and (iii) forming a high work function gate electrode on a surface of the ONO dielectric stack. Other embodiments are also disclosed.
摘要:
A nonvolatile charge trap memory device and a method to form the same are described. The device includes a channel region having a channel length with crystal plane orientation. The channel region is between a pair of source and drain regions and a gate stack is disposed above the channel region.
摘要:
A nonvolatile charge trap memory device and a method to form the same are described. The device includes a channel region having a channel length with crystal plane orientation. The channel region is between a pair of source and drain regions and a gate stack is disposed above the channel region.
摘要:
A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
摘要:
An embodiment of a nonvolatile charge trap memory device is described. In one embodiment, the device comprises a channel comprising silicon overlying a surface on a substrate electrically connecting a first diffusion region and a second diffusion region of the memory device, and a gate stack intersecting and overlying at least a portion of the channel, the gate stack comprising a tunnel oxide abutting the channel, a split charge-trapping region abutting the tunnel oxide, and a multi-layer blocking dielectric abutting the split charge-trapping region. The split charge-trapping region includes a first charge-trapping layer comprising a nitride closer to the tunnel oxide, and a second charge-trapping layer comprising a nitride overlying the first charge-trapping layer. The multi-layer blocking dielectric comprises at least a high-K dielectric layer.
摘要:
An embodiment of a semiconductor device includes a non-volatile memory transistor including an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate, the ONO dielectric stack comprising a multilayer charge storage layer including a silicon-rich, oxygen-lean top silicon oxynitride layer and a silicon-rich, oxygen-rich bottom silicon oxynitride layer, and a metal oxide semiconductor (MOS) logic transistor including a gate oxide and a high work function gate electrode.
摘要:
A nonvolatile charge trap memory device is described. The device includes a substrate having a channel region and a pair of source and drain regions. A gate stack is above the substrate over the channel region and between the pair of source and drain regions. The gate stack includes a high dielectric constant blocking region.