摘要:
A lithium ion secondary battery including: an electrode group including a belt-like positive electrode and a belt-like negative electrode that are wound with a separator interposed therebetween; and a can with a bottom for accommodating the electrode group, wherein the positive electrode has a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector, the negative electrode has a negative electrode current collector and a negative electrode mixture layer carried on the negative electrode current collector, and a porous heat-resistant layer is partially provided between the separator and at least one of the positive electrode mixture layer and the negative electrode mixture layer. Since a porous heat-resistant layer is thus placed, a high performance lithium ion secondary battery capable of efficiently preventing internal short circuit due to overheating while preventing decrease in battery characteristics can be provided.
摘要:
A lithium ion secondary battery including: an electrode group including a belt-like positive electrode and a belt-like negative electrode that are wound with a separator interposed therebetween; and a can with a bottom for accommodating the electrode group, wherein the positive electrode has a positive electrode current collector and a positive electrode mixture layer carried on the positive electrode current collector, the negative electrode has a negative electrode current collector and a negative electrode mixture layer carried on the negative electrode current collector, and a porous heat-resistant layer is partially provided between the separator and at least one of the positive electrode mixture layer and the negative electrode mixture layer. Since a porous heat-resistant layer is thus placed, a high performance lithium ion secondary battery capable of efficiently preventing internal short circuit due to overheating while preventing decrease in battery characteristics can be provided.
摘要:
In the present method, a non-aqueous electrolyte secondary battery is charged by repeating n+1 times a constant current charge and a subsequent constant voltage charge, where n is an integer of 1 or more. (1) An nth charge comprises charging the secondary battery at a current Ic(n) to a voltage Ec(n), and subsequently charging the secondary battery at the voltage Ec(n) until the current decreases from Ic(n) to Ic(n+1). (2) An (n+1)th charge comprises charging the secondary battery at the current Ic(n+1) to a voltage Ec(n+1), and subsequently charging the secondary battery at the voltage Ec(n+1) until the current decreases from Ic(n+1) to Ic(n+2). Consequently, the charge time of the non-aqueous electrolyte secondary battery can be shortened while deterioration of the battery can be suppressed.
摘要:
In the present method, a non-aqueous electrolyte secondary battery is charged by repeating n+1 times a constant current charge and a subsequent constant voltage charge, where n is an integer of 1 or more. (1) An nth charge comprises charging the secondary battery at a current Ic(n) to a voltage Ec(n), and subsequently charging the secondary battery at the voltage Ec(n) until the current decreases from Ic(n) to Ic(n+1). (2) An (n+1)th charge comprises charging the secondary battery at the current Ic(n+1) to a voltage Ec(n+1), and subsequently charging the secondary battery at the voltage Ec(n+1) until the current decreases from Ic(n+1) to Ic(n+2). Consequently, the charge time of the non-aqueous electrolyte secondary battery can be shortened while deterioration of the battery can be suppressed.
摘要:
A lithium ion secondary battery which includes: a power generation element including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte; a case accommodating the power generation element and having an opening; and a sealing plate sealing the opening of the case is charged. The sealing plate has an external terminal of the positive or negative electrode, and an internal terminal electrically connected to the positive or negative electrode. The external and internal terminals are connected to each other and have an electrical resistance therebetween of 0.1 to 2 mΩ. Two or more constant-current charging steps in each of which the secondary battery is charged at a constant charge current until a charge voltage reaches an end-of-charge voltage are performed. In the two or more constant-current charging steps, the secondary battery is subjected to constant-current charging at a current Ic(1) of 1 to 5 C until the charge voltage reaches a target voltage Ecs(1). After the charge voltage reached the target voltage Ecs(1), the secondary battery is subjected to constant-current charging at a current Ic(k) satisfying Ic(k)
摘要:
Disclosed is a non-aqueous electrolyte secondary battery including: a spirally-wound electrode group including a continuous first electrode, a continuous second electrode, and a continuous separator interposed between the first electrode and the second electrode; and a non-aqueous electrolyte. The first electrode includes a sheet-like first current collector, and a first active material layer formed on a surface of the first current collector; and the second electrode includes a sheet-like second current collector, and a second active material layer formed on a surface of the second current collector. In the electrode group, the winding terminal end of the first electrode faces the second electrode on the further outer peripheral side, with the separator interposed therebetween. The facing site of the second electrode where the second electrode faces the winding terminal end of the first electrode is reinforced with a reinforcing component for supplementing the thickness of the second electrode.
摘要:
A non-aqueous electrolyte secondary battery comprising: an electrode group in which a long first electrode, a long second electrode, and a long separator disposed therebetween are wound spirally; and a non-aqueous electrolyte, is provided. The first electrode includes a sheet-like first current collector and a first active material layer disposed on a surface of the first current collector. The second electrode includes a sheet-like second current collector and a second active material layer disposed on a surface of the second current collector. An end portion of the first electrode on a winding-end side of the electrode group has a non-linear form and faces the second electrode placed on an outer circumferential side with the separator therebetween. The non-linear form is preferably a periodically continuous form, for example a waveform.
摘要:
A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode comprises a positive electrode active material comprising a particle of a composite oxide represented by a general formula: LixMe1-y-zMyLzO2. In the general formula, the element Me is at least one transition metal element except Ti, Mn, Y and Zr, the element M is at least one selected from the group consisting of Mg, Ti, Mn and Zn, and the element L is at least one selected from the group consisting of Al, Ca, Ba, Sr, Y and Zr, and 1≦x≦1.05, 0.005≦y≦0.1 (with a proviso that 0.005≦y≦0.5 is satisfied in the case of the element M being Mn) and 0≦z≦0.05 are satisfied. The separator includes a plurality of laminated monolayer films, the plurality of monolayer films each have a microporous structure, and a positive electrode-side monolayer film selected from the plurality of monolayer films which faces the positive electrode is made of polypropylene.
摘要:
There is provided a lithium ion secondary battery that includes a positive electrode having high thermal stability and is capable of greatly reducing the possibility of causing thermal runaway even in a nail penetration test. A lithium ion secondary battery including a positive electrode including a lithium composite oxide and a porous film bonded to at least one of a surface of the positive electrode and a surface of a negative electrode, wherein the porous film includes an inorganic oxide filler and a film binder, and the lithium composite oxide is represented by the formula: Lia(Co1-x-yMx1My2)bO2 (wherein element M1 is at least one selected from the group consisting of Mg, Sr, Y, Zr, Ca and Ti, element M2 is at least one selected from the group consisting of Al, Ga, In and Tl, and 0
摘要翻译:提供了一种锂离子二次电池,其包括具有高热稳定性的正电极,并且即使在指甲穿透试验中也能够大大降低引起热失控的可能性。 一种锂离子二次电池,包括具有锂复合氧化物的正极和与正极的表面和负极的表面中的至少一个结合的多孔膜,其中,所述多孔膜包括无机氧化物填料和膜 粘合剂,并且锂复合氧化物由下式表示:Li 1(CO 1-xy M 1 x 1)/ 1 (其中元素M 1和O 2在其中) 选自Mg,Sr,Y,Zr,Ca和Ti中的至少一种元素M 2是选自Al,Ga,In和Tl中的至少一种,0和0
摘要:
A valve device including a valve chamber having an inlet port at one end and a valve seat at the other end; a valve housing containing the valve chamber; the valve chamber accommodating a spherical valve element which performs opening and closing operation to the valve seat, and a valve spring which urges the valve element in a closing direction; and a push rod which penetrates a center hole of the valve seat and pushes the valve element in an opening direction. A cylindrical valve guide member is fit into the valve chamber, the cylindrical valve guide member including a plurality of guide projections on an inner peripheral surface to guide opening and closing operation of the valve element. Grooves between the plurality of guide projections serve as passages providing communication between the inlet port and the valve seat.