摘要:
A system for a remote diagnosis of a numerical control apparatus (CNC), for remotely diagnosing a failure of the CNC. A personal computer is operated by a service engineer and a remote operation command is output to the CNC through a communication line. Diagnosis data of the CNC is selected based on the remote operation command, transferred to the personal computer, and displayed on a display unit, whereby the service engineer can make diagnosis of the cause of the failure at the CNC, based on the diagnosis data displayed.
摘要:
A gravity axis brake control method of controlling the brake of the gravity axis of a computerized numerical controlled machine tool, wherein a computerized numerical control (CNC) notifies a programmable controller (PC) that the control of the gravity axis will be interrupted (Step S1), the PC outputs a signal for actuating the brake at the machine tool (step S3), and the CNC turns off an exciting current of a servo motor after a preset brake operation completion time has passed (step S7). The preset time is longer than the time after that at which the CNC notifies the PC to interrupt the control of the servo motor as compared to the time at which the brake locks the gravity axis.
摘要:
An involute interpolation method is provided for machining operations in a numerical control apparatus, in which a rotational direction of an involute curve, a center position of a base circle (C), and a radius (R) of the base circle (C) are instructed, and an interpolation is performed with respect to an involute curve having a start point (P.sub.s) on a first involute curve (IC1) and an end point (P.sub.e) on a second involute curve (IC2). According to such a method, machining operations can be done by the use of a specifically configured involute curve which is distinct from the two involute curves.
摘要:
A test run control method tests a computerized numerical control (CNC) apparatus to check a generated NC program. Data are read block by block from an NC program in response to a test run start command (ST1), the data are converted into execution blocks while forwarding a tool in a forward travel, and the data in the form of execution blocks and model data necessary for a preliminary processing are stored in a reverse function memory. The tool is reversed in a reverse travel based on the data in the form of execution blocks stored in the reverse function memory in response to a reverse command (ST2). The reverse travel is stopped at a given time (P11) in response to a stop command (ST3) to allow the NC program to be edited in a prescribed range. The program is editged in the prescribed range (N112) with an editing function. The preliminary processing is effected on the basis of the modal data stored in the reverse function memory in response to a test run restart command (ST5), and the edited NC program is executed. With the above method, the NC program can be checked and modified in a simple operation.
摘要:
An involute interpolation speed control system for effecting an involute interpolation to which cutter compensation is applied when machining by a numerical control apparatus and the like, comprises a method of outputting commands for a direction in which a first involute curve as an actual machining configuration is rotated, the coordinates of the end point of the first involute curve, the position of the center of a basic circle viewed from a start point of the first involute curve, the radius of the basic circle, a feed speed, a direction in which a cutter is offset, and the radius of the cutter. The offset vector of the cutter is created based on the commands. The calculating the equation of a second involute curve connecting the start point and the end point after the offset vector has been created, is calculated. The radius of curvature of the second involute curve at the center of the cutter is determined. Also, a feed speed override value based on the direction in which the cutter is offset, the offset amount, and the radius of curvature are determined. The second involute curve based on the value obtained by multiplying the feed speed override value by the feed speed is interpolated. Thus, an interpolation is executed such that the cutting speed in a tangential direction of the outer circumference of the cutter by which an actual machining configuration is created is kept at a constant value.
摘要:
An involute interpolation error correcting method corrects an error on involute interpolation in a numerical control system for machining gears and pump vanes. The method corrects an insufficient cut in an actual configuration of a workpiece which is machined along a first involute curve (In1) that is commanded. A radius of curvature (Rs) from a base circle (C) to a starting point (Ps3) of the insufficient cut on the first involute curve (In1), and an error (De) which occurs at an ending point of the first involute curve (In1) in a direction normal to the insufficient cut, are determined from the machined configuration, and set as parameters in the numerical control system. On interpolation from the starting point (Ps3) of the insufficient cut to the ending point (Pe1) of the first involute curve, a first offset at the time the first involute curve is interpolated is changed to a second offset which is increased from the first offset by the error (De). On interpolation up to a point (Ae1), the offset is restored to its original value. The configuration which is machined according to the above process is free of the insufficient cut. An excessive cut can be prevented when the offset is reduced.
摘要:
An involute interpolation error correction system for correcting an error attributable to an involute interpolation of a numerical control device or the like. When machining is effected in accordance with a command for an involute curve (In1), a bite is produced in an actual work shape in the vicinity of a basic circle (C). The start point (Ps3) of this bite, the radius (Rs) from the basic circle (C) and an error amount (De) in the normal direction of the bite are obtained from the work shape, and this data is set as parameters in the numerical control device. The numerical control device allows a cutting along the involute curve (In1) up to the point Ps3, and then cuts along an involute curve (In3) having an end point which is deviated from the point Ps3 by the error amount (De) in the normal direction, whereby a bite-free involute curve machining can be effected.
摘要:
An involute interpolation speed control method controls a machining speed during a numerical control machining process with involute curve interpolation. A radius of curvature is determined from equations of the involute curve (S3), and whether said radius of curvature is smaller than a predetermined value is then determined (S4). The machining speed is reduced with an override value if the radius of curvature is smaller than the predetermined value (S5, S6, S7). In the vicinity of a base circle for the involute curve, since the radius of curvature is small, any well machined surface would not be produced at a given tangential speed. Therefore, the machining speed is reduced with the override value in the vicinity of the base circle.
摘要:
Disclosed is an NC command system of a CNC lathe having a plurality of tool posts, the position of which can be independently controlled, and a plurality of spindles an rpm of which can be independently controlled, wherein a coupling relationship during machining by the spindles (3, 5) and the tool posts (1, 2) can be established and switched by a machining program, and thus a more effective machining can be realized.
摘要:
A working route of a main shaft is divided into a plurality of measurement points, and a length from a center of a complete round to the working route of the main shaft at each of the measurement points is measured, and this measured value is compared with a radial length of the complete round to operate a deviation amount from the complete round at each of the measurement points. This deviation amount is utilized to find a transferred position. As correction values for correcting the deviation value, an X-axis incremental amount and a Y-axis incremental amount obtained from a difference in the transferred position between the respective measurement points, or an X-axis absolute value and a Y-axis absolute value of the transferred position at each of the measurement points are incorporated into an NC working program to perform complete round working according to the program.