摘要:
Disclosed herein is a method of manufacturing a solid-state image pickup element, the method including the steps of forming a plurality of photoelectric conversion elements within a semiconductor substrate; forming a wiring layer via an insulating film on a surface of the semiconductor substrate in which surface the plurality of photoelectric conversion elements are formed; laminating a supporting substrate to a surface of the semiconductor substrate in which surface the wiring layer is formed via an adhesive; applying a pressure to the semiconductor substrate and the supporting substrate in a state of the semiconductor substrate and the supporting substrate being laminated to each other via the adhesive; and curing the adhesive by heating the adhesive to a curing temperature of the adhesive after releasing the applied pressure.
摘要:
Disclosed herein is a method of manufacturing a solid-state image pickup element, the method including the steps of forming a plurality of photoelectric conversion elements within a semiconductor substrate; forming a wiring layer via an insulating film on a surface of the semiconductor substrate in which surface the plurality of photoelectric conversion elements are formed; laminating a supporting substrate to a surface of the semiconductor substrate in which surface the wiring layer is formed via an adhesive; applying a pressure to the semiconductor substrate and the supporting substrate in a state of the semiconductor substrate and the supporting substrate being laminated to each other via the adhesive; and curing the adhesive by heating the adhesive to a curing temperature of the adhesive after releasing the applied pressure.
摘要:
A method of manufacturing a solid-state image pickup device comprises a process for forming a plurality of photoelectric conversion elements PD within a semiconductor substrate 4, a process for forming an interconnection portion, having an interconnection layer 8 in an insulating layer 7, on the surface side of the semiconductor substrate 4, a process for forming an adhesive layer, made of a material cured at a temperature lower than a deterioration starting temperature of the interconnection layer 8, on the surface of the interconnection portion and bonding a supporting substrate 30 to the surface side of the interconnection portion through the adhesive layer 9 by heat treatment at a temperature lower than the deterioration starting temperature of the interconnection layer 8 and a process for decreasing a thickness of the semiconductor substrate 4 from the back side. A solid-state image pickup device manufacturing method can bond the supporting substrate 30 to the surface side of the interconnection portion through the adhesive layer 9 without exerting a thermal influence upon the interconnection layer 8 that was previously formed on the surface side of the semiconductor substrate 4.
摘要:
A post-dry etching cleaning liquid composition for cleaning a substrate after dry etching is provided, the cleaning liquid composition containing at least one type of fluorine compound, glyoxylic acid, at least one type of organic acid salt, and water. With regard to the fluorine compound, ammonium fluoride may be used. With regard to the organic acid salt, at least one of ammonium oxalate, ammonium tartarate, ammonium citrate, and ammonium acetate may be used.
摘要:
One example of a separation-material composition for a photo-resist according to the present invention comprises 5.0 weight % of sulfamic acid, 34.7 weight % of H2O, 0.3 weight % of ammonium 1-hydrogen difluoride, 30 weight % of N,N-dimethylacetamide and 30 weight % of diethylene glycol mono-n-buthyl ether. Another example of a separation-material composition for a photo-resist according to the present invention comprises 1-hydroxyethylidene-1, 3.0 weight % of 1-diphosphonic acid, 0.12 weight % of anmonium fluoride, 48.38 weight % of H2O and 48.5 weight % of diethylene glycol mono-n-buthl ether. The separation-material composition for the photo-resist is mainly used for a medicinal liquid washing liquid/scientific liquid in order to remove the photo-resist residuals and the by-product polymer after an ashing process of a photo-resist mask. It can propose a separation-material composition for a photo-resist such that the photo-resist residuals and the by-product polymer are easily removed after a dry etching process and at the same time the low dielectric-constant insulation film is avoided from erosion and oxidization.
摘要:
A post-dry etching cleaning liquid composition for cleaning a substrate after dry etching is provided, the cleaning liquid composition containing at least one type of fluorine compound, glyoxylic acid, at least one type of organic acid salt, and water. With regard to the fluorine compound, ammonium fluoride may be used. With regard to the organic acid salt, at least one of ammonium oxalate, ammonium tartarate, ammonium citrate, and ammonium acetate may be used.
摘要:
A post-dry etching cleaning liquid composition for cleaning a substrate after dry etching is provided, the cleaning liquid composition containing at least one type of fluorine compound, glyoxylic acid, at least one type of organic acid salt, and water. With regard to the fluorine compound, ammonium fluoride may be used. With regard to the organic acid salt, at least one of ammonium oxalate, ammonium tartarate, ammonium citrate, and ammonium acetate may be used.
摘要:
One example of a separation-material composition for a photo-resist according to the present invention comprises 5.0 weight % of sulfamic acid, 34.7 weight % of H2O, 0.3 weight % of ammonium 1-hydrogen difluoride, 30 weight % of N,N-dimethylacetamide and 30 weight % of diethylene glycol mono-n-buthyl ether. Another example of a separation-material composition for a photo-resist according to the present invention comprises 1-hydroxyethylidene-1, 3.0 weight % of 1-diphosphonic acid, 0.12 weight % of ammonium fluoride, 48.38 weight % of H2O and 48.5 weight % of diethylene glycol mono-n-buthyl ether. The separation-material composition for the photo-resist is mainly used for a medicinal liquid washing liquid/scientific liquid in order to remove the photo-resist residuals and the by-product polymer after an ashing process of a photo-resist mask. It can propose a separation-material composition for a photo-resist such that the photo-resist residuals and the by-product polymer are easily removed after a dry etching process and at the same time the low dielectric-constant insulation film is avoided from erosion and oxidization.
摘要:
A method of manufacturing a solid-state image pickup device comprises a process for forming a plurality of photoelectric conversion elements PD within a semiconductor substrate 4, a process for forming an interconnection portion, having an interconnection layer 8 in an insulating layer 7, on the surface side of the semiconductor substrate 4, a process for forming an adhesive layer, made of a material cured at a temperature lower than a deterioration starting temperature of the interconnection layer 8, on the surface of the interconnection portion and bonding a supporting substrate 30 to the surface side of the interconnection portion through the adhesive layer 9 by heat treatment at a temperature lower than the deterioration starting temperature of the interconnection layer 8 and a process for decreasing a thickness of the semiconductor substrate 4 from the back side. A solid-state image pickup device manufacturing method can bond the supporting substrate 30 to the surface side of the interconnection portion through the adhesive layer 9 without exerting a thermal influence upon the interconnection layer 8 that was previously formed on the surface side of the semiconductor substrate 4.
摘要:
A post-dry etching cleaning liquid composition for cleaning a substrate after dry etching is provided, the cleaning liquid composition containing at least one type of fluorine compound, glyoxylic acid, at least one type of organic acid salt, and water. With regard to the fluorine compound, ammonium fluoride may be used. With regard to the organic acid salt, at least one of ammonium oxalate, ammonium tartarate, ammonium citrate, and ammonium acetate may be used.