摘要:
For obtaining p-Si by irradiating a laser beam to an a-Si layer to polycrystallize, an energy level in a region to be irradiated by the laser beam is set such that a level at the rear area of the region along a scan direction of the laser beam is lower than that at the front area or the center area of the region. The energy level at the front area or the center area of the region is set such that it is substantially equal to or more than the upper limit energy level which maximizes a grain size of the p-Si obtained. Since an energy profile is set as described above, when the laser beam is scanned on the a-Si layer, an irradiated energy of the laser on the region is gradually lowered from the upper limit as the laser beam passes through, which allows the semiconductor layer to be annealed within an optimal energy level during the latter half of the annealing process.
摘要:
For obtaining p-Si by irradiating a laser beam to an a-Si layer to polycrystallize, an energy level in a region to be irradiated by the laser beam is set such that a level at the rear area of the region along a scan direction of the laser beam is lower than that at the front area or the center area of the region. The energy level at the front area or the center area of the region is set such that it is substantially equal to or more than the upper limit energy level which maximizes a grain size of the p-Si obtained. Since an energy profile is set as described above, when the laser beam is scanned on the a-Si layer, an irradiated energy of the laser on the region is gradually lowered from the upper limit as the laser beam passes through, which allows the semiconductor layer to be annealed within an optimal energy level during the latter half of the annealing process.
摘要:
For obtaining p-Si by irradiating a laser beam to an a-Si layer to polycrystallize, an energy level in a region to be irradiated by the laser beam is set such that a level at the rear area of the region along a scan direction of the laser beam is lower than that at the front area or the center area of the region. The energy level at the front area or the center area of the region is set such that it is substantially equal to or more than the upper limit energy level which maximizes a grain size of the p-Si obtained. since an energy profile is set as described above, when the laser beam is scanned on the a-Si layer, an irradiated energy of the laser on the region is gradually lowered from the upper limit as the laser beam passes through, which allows the semiconductor layer to be annealed within an optimal energy level during the latter half of the annealing process.
摘要:
For obtaining p-Si by irradiating a laser beam to an a-Si layer to polycrystallize, an energy level in a region to be irradiated by the laser beam is set such that a level at the rear area of the region along a scan direction of the laser beam is lower than that at the front area or the center area of the region. The energy level at the front area or the center area of the region is set such that it is substantially equal to or more than the upper limit energy level which maximizes a grain size of the p-Si obtained. Since an energy profile is set as described above, when the laser beam is scanned on the a-Si layer, an irradiated energy of the laser on the region is gradually lowered from the upper limit as the laser beam passes through, which allows the semiconductor layer to be annealed within an optimal energy level during the latter half of the annealing process.
摘要:
A laser annealing apparatus is provided in which laser light is irradiated onto an amorphous semiconductor layer placed inside an annealing chamber through a chamber window, thereby poly-crystallizing the amorphous semiconductor film. Inside the annealing chamber a low degree vacuum (about 1.3×103 Pa to about 1.3 Pa) is maintained at a room temperature. An inert gas such as nitrogen, hydrogen, or argon is introduced into the atmosphere while maintaining the low degree vacuum. As a result, the surface smoothness of the polycrystalline semiconductor layer is comparable to that resulting from high degree vacuum annealing, while, unlike high degree vacuum annealing, there is less contamination of the chamber window and productivity is improved.
摘要:
Laser anneal processing of a semiconductor layer is repeated in a number of steps. Grain size is increased using high energy ELA for a first step, and grain sizes are uniformed using ELA with low energy for a later step. As a defective crystallization region occurs in an excessive energy region during the ELA for the first step, in the ELA for the second time, excessive energy is removed and the defective crystallization region is eliminated by reducing the energy to an optimal value, thereby improving the crystallinity of a p-Si layer.
摘要:
Laser anneal processing of a semiconductor layer is repeated in a number of steps. Grain size is increased using high energy ELA for a first step, and grain sizes are uniformed using ELA with low energy for a later step. As a defective crystallization region occurs in an excessive energy region during the ELA for the first step, in the ELA for the second time, excessive energy is removed and the defective crystallization region is eliminated by reducing the energy to an optimal value, thereby improving the crystallinity of a p-Si layer.
摘要:
The present invention relates to a method for producing a semiconductor thin film, in which a single crystalline silicon film is grown on an insulative single crystalline substrate, such as a single crystalline sapphire substrate, by the molecular beam epitaxy method. Silicon molecular beams are irradiated onto the substrate under the conditions wherein a substrate temperature is kept at 700.degree. to 900.degree. C. and an intensity of the molecular beams is kept within a range from 1.times.10.sup.12 atoms/cm.sup.2 .multidot.sec to 1.times.10.sup.13 atoms/cm.sup.2 .multidot.sec to clean a surface of the substrate and then the intensity of the molecular beams is increased to form the single crystalline silicon film. Thus, the substrate can be cleaned without being defected.
摘要翻译:本发明涉及通过分子束外延法在单晶蓝宝石衬底等绝缘性单晶衬底上生长单晶硅膜的半导体薄膜的制造方法。 在基板温度保持在700〜900℃的条件下将硅分子束照射到基板上,分子束的强度保持在1×10 12原子/ cm 2×1〜1×10 13原子/ cm 2×的范围内,以清洁 然后增加分子束的强度,形成单晶硅膜。 因此,可以清洁基板而不会发生缺陷。
摘要:
An organic EL display unit is an organic EL display unit which includes a first substrate; an organic EL element which is located on the first substrate, which includes a first electrode, an organic layer containing at least an organic light emitting layer, and a second electrode, and which is configured to emit excitation light; a second substrate; and an optical conversion layer which is located on the second substrate and which is configured to emit light to the outside through a display surface, the light being obtained by conversion of a color tone of the excitation light, the display surface is flat and rectangular, and the second substrate is divided into a plurality of sections along a long side direction of the display surface.
摘要:
An organic electric-field element includes an elongated support base member, a first electrode provided on the support base member, an organic layer provided to cover the first electrode, and a second electrode provided to cover the organic layer. At one end portion of the support base member, a two-layer structure region including the support base member and the first electrode is provided, and a three-layer structure region including the support base member, the first electrode, and the organic layer is provided, extending continuously from the other end of the two-layer structure region. At the other end portion of the support base member, a two-layer structure region including the support base member and the second electrode is provided, and a three-layer structure region including the support base member, the second electrode, and the organic layer is provided, extending continuously from one end of the two-layer structure region.