摘要:
In a method of forming a gate recess, on a surface of an epitaxial wafer including an epitaxial substrate, having a semiconductor layer having the band gap energy varying therein in the depth-wise direction, and a SiN surface protective layer, having a sidewall forming a gate opening and coating the surface of the epitaxial substrate, ultraviolet light having its energy equivalent to the band gap energy of the specific semiconductor layer is irradiated, while the specific semiconductor layer is photoelectrochemically etched from the gate opening with the SiN surface protective layer used as a mask. The gate recess free from plasma ion-induced damage is thus obtained.
摘要:
A field effect transistor includes an active layer formed on a semiconductor substrate, source and drain electrodes formed apart from each other on the active layer, a gate electrode formed between the source and drain electrodes, a first interlayer film formed on the active layer, a first field plate (FP) electrode connected to the gate electrode and provided on the first interlayer film between the gate and drain electrodes, a second interlayer film formed on the first interlayer film, and a second FP electrode connected to the source electrode and provided on the second interlayer film between the first FP and drain electrodes. The field effect transistor is provided which exhibits a comparatively high gain factor at high frequencies.
摘要:
An opening for forming a gate electrode is provided by a first photoresist pattern formed on an insulating film. Reactive ion etching by inductively coupled plasma is applied to the insulating film through the first photoresist pattern as a mask to thereby expose the surface of a GaN semiconductor layer, evaporating thereon a gate metal such as NiAu, thereby forming the gate electrode by self-aligned process. This prevents an oxidized film from being formed on the surface of the semiconductor layer. After the gate electrode is formed, a second photoresist pattern is formed to form a field plate on the gate electrode and the insulating film through the second photoresist pattern as a mask. Thereby, Ti having a high adhesiveness with an insulating film made of SiN or the like can be used as a field plate metal.
摘要:
A semiconductor device includes a support substrate and a semiconductor layer formed on the underlying substrate. The support substrate has its metal part formed by plating and extending across its entire thickness, whilst it has the other region made of semiconductor part. In particular, the region of the support substrate lying immediately below an active region is the metal part formed by plating. The region of the support substrate lying immediately below the region other than the active region is an inactive region made of semiconductor. The semiconductor device thus suppresses warping of a substrate otherwise caused by stress in the metal part formed by plating, and heat evolved due to the current in operation of the semiconductor device may be dissipated over the shortest path through the metal part having a higher thermal conductivity.
摘要:
In a method of forming a gate recess, on a surface of an epitaxial wafer including an epitaxial substrate, having a semiconductor layer having the band gap energy varying therein in the depth-wise direction, and a SiN surface protective layer, having a sidewall forming a gate opening and coating the surface of the epitaxial substrate, ultraviolet light having its energy equivalent to the band gap energy of the specific semiconductor layer is irradiated, while the specific semiconductor layer is photoelectrochemically etched from the gate opening with the SiN surface protective layer used as a mask. The gate recess free from plasma ion-induced damage is thus obtained.
摘要:
A semiconductor device includes a substrate, laminated layers provided on the substrate. The laminated layers include an AlGaN barrier layer as an uppermost layer. A gate electrode is provided in a channel region of the laminated layers. A source electrode and a drain electrode are provided so as to face each other via the channel region interposed therebetween. A silicon nitride film is formed to cover an exposed surface of the laminated layers exposed via the gate electrode, the source electrode and the drain electrode. The silicon nitride film has characteristics that an etching rate thereof is in a range from 1 nm per/min to 2 nm/min for an etchant in which hydrofluoric acid having a concentration of 50 weight percent and ammonium fluoride having a concentration of 40 weight percent are mixed at a mixing ratio of 1:9.
摘要:
A semiconductor device includes a support substrate and a semiconductor layer formed on the underlying substrate. The support substrate has its metal part formed by plating and extending across its entire thickness, whilst it has the other region made of semiconductor part. In particular, the region of the support substrate lying immediately below an active region is the metal part formed by plating. The region of the support substrate lying immediately below the region other than the active region is an inactive region made of semiconductor. The semiconductor device thus suppresses warping of a substrate otherwise caused by stress in the metal part formed by plating, and heat evolved due to the current in operation of the semiconductor device may be dissipated over the shortest path through the metal part having a higher thermal conductivity.
摘要:
An opening for forming a gate electrode is provided by a first photoresist pattern formed on an insulating film. Reactive ion etching by inductively coupled plasma is applied to the insulating film through the first photoresist pattern as a mask to thereby expose the surface of a GaN semiconductor layer, evaporating thereon a gate metal such as NiAu, thereby forming the gate electrode by self-aligned process. This prevents an oxidized film from being formed on the surface of the semiconductor layer. After the gate electrode is formed, a second photoresist pattern is formed to form a field plate on the gate electrode and the insulating film through the second photoresist pattern as a mask. Thereby, Ti having a high adhesiveness with an insulating film made of SiN or the like can be used as a field plate metal.
摘要:
There is provided a gallium nitride high electron mobility transistor including: a channel layer that lets a carrier travel at high velocity; a carrier supply layer that generates the carrier; and a cap layer, disposed on the carrier supply layer and functioning to prevent oxidation of the carrier supply layer, to reduce gate leakage current, and to increase voltage withstand to gate voltage, wherein a thickness of the cap layer is set at a minimum as thicker than 11 nm.
摘要:
A wafer for semiconductor device fabrication, from which large output power can be obtained by making the off-state breakdown voltage higher than in the prior art. The wafer for semiconductor device fabrication comprises a substrate, GaN electron transit layer formed on the side of the principal surface of the substrate, and AlGaN electron supply layer formed on the electron transit layer. The thickness of the electron transit layer is from 0.2 to 0.9 μm.