Nano/macroporous bone tissue scaffolds for regenerative medicine
    1.
    发明授权
    Nano/macroporous bone tissue scaffolds for regenerative medicine 有权
    用于再生医学的纳米/大孔骨组织支架

    公开(公告)号:US08277829B2

    公开(公告)日:2012-10-02

    申请号:US12377699

    申请日:2007-08-30

    CPC分类号: A61L27/56 A61L27/52

    摘要: A biocompatible inorganic porous material having a three-dimensional coexistent network of interconnected macro-pores and nanopores produced by the steps of mixing an organic water-soluble polymer (e.g., polyethylene oxide or a block copolymer of ethylene oxide and propylene oxide), an alkoxysilane, and an inorganic water-soluble calcium salt in an aqueous acid solution, such that a sol-gel process of hydrolysis and polycondensation is initiated and thereby producing a gel; drying the gel to remove solvent by evaporation; and heating the gel to remove the polymer by thermal decomposition, thereby forming an inorganic porous material, which may be suitable for use as a bone tissue scaffold.

    摘要翻译: 具有通过混合有机水溶性聚合物(例如,聚环氧乙烷或环氧乙烷和环氧丙烷的嵌段共聚物),烷氧基硅烷等的相互连接的大孔和纳米孔的三维共存网络的生物相容性无机多孔体 和无水水溶性钙盐,在酸性水溶液中开始水解和缩聚的溶胶 - 凝胶法,从而产生凝胶; 干燥凝胶以通过蒸发除去溶剂; 并加热凝胶以通过热分解除去聚合物,从而形成可适合用作骨组织支架的无机多孔材料。

    NANO/MACROPOROUS BONE TISSUE SCAFFOLDS FOR REGENERATIVE MEDICINE
    2.
    发明申请
    NANO/MACROPOROUS BONE TISSUE SCAFFOLDS FOR REGENERATIVE MEDICINE 有权
    NANO / MACROPOROUS骨组织用于再生医学

    公开(公告)号:US20100272826A1

    公开(公告)日:2010-10-28

    申请号:US12377699

    申请日:2007-08-30

    CPC分类号: A61L27/56 A61L27/52

    摘要: A biocompatible inorganic porous material having a three-dimensional coexistent network of interconnected macro-pores and nanopores produced by the steps of mixing an organic water-soluble polymer (e.g., polyethylene oxide or a block copolymer of ethylene oxide and propylene oxide), an alkoxysilane, and an inorganic water-soluble calcium salt in an aqueous acid solution, such that a sol-gel process of hydrolysis and polycondensation is initiated and thereby producing a gel; drying the gel to remove solvent by evaporation; and heating the gel to remove the polymer by thermal decomposition, thereby forming an inorganic porous material, which may be suitable for use as a bone tissue scaffold.

    摘要翻译: 具有通过混合有机水溶性聚合物(例如,聚环氧乙烷或环氧乙烷和环氧丙烷的嵌段共聚物),烷氧基硅烷等的相互连接的大孔和纳米孔的三维共存网络的生物相容性无机多孔体 和无水水溶性钙盐,在酸性水溶液中开始水解和缩聚的溶胶 - 凝胶法,从而产生凝胶; 干燥凝胶以通过蒸发除去溶剂; 并加热凝胶以通过热分解除去聚合物,从而形成可适合用作骨组织支架的无机多孔材料。

    Sensors Incorporating Freestanding Carbon NanoStructures
    4.
    发明申请
    Sensors Incorporating Freestanding Carbon NanoStructures 审中-公开
    包含独立碳纳米结构的传感器

    公开(公告)号:US20130256627A1

    公开(公告)日:2013-10-03

    申请号:US12490484

    申请日:2009-06-24

    IPC分类号: H01L31/028 H01L31/18

    摘要: Sensors for detecting IR radiation, UV radiation, X-Rays, light, gas, and chemicals. The sensors herein incorporate freestanding carbon nanostructures, such as single-walled carbon nanotubes (“SWCNT”), atomically thin carbon sheets having a thickness of about between 1 atom and about 5 atoms (“graphene”), and combinations thereof. The freestanding carbon nanostructures are suspended above a substrate by a plurality of conductors, each conductor electrically connected to the carbon nanostructure. In one method of manufacture, a resonance chamber is formed under the carbon nanostructure by etching of the substrate, yielding a sensor wherein the resonance chamber is bounded by at least the substrate and the carbon nanostructure.

    摘要翻译: 用于检测红外辐射,紫外线辐射,X射线,光,气体和化学物质的传感器。 本文中的传感器包括独立的碳纳米结构,例如单壁碳纳米管(“SWCNT”),具有约1原子和约5个原子之间的厚度的原子薄碳片(“石墨烯”)及其组合。 独立的碳纳米结构通过多个导体悬挂在基板上方,每个导体电连接到碳纳米结构。 在一种制造方法中,通过蚀刻基板在碳纳米结构下形成共振室,产生传感器,其中共振室至少由基底和碳纳米结构界定。

    Formal verification of bit-serial division and bit-serial square-root circuit designs
    5.
    发明授权
    Formal verification of bit-serial division and bit-serial square-root circuit designs 有权
    位串行分频和位串行平方根电路设计的正式验证

    公开(公告)号:US08732637B2

    公开(公告)日:2014-05-20

    申请号:US13561895

    申请日:2012-07-30

    CPC分类号: G06F17/504

    摘要: Methods and apparatuses are described for formally verifying a bit-serial division circuit design or a bit-serial square-root circuit design. Some embodiments formally verify a bit-serial division circuit design using a set of properties that can be efficiently proven using a bit-level solver. In some embodiments, the set of properties that are used for verifying a bit-serial division circuit design does not include any terms that multiply a w-bit partial quotient with the divisor. Some embodiments formally verify a bit-serial square-root circuit design using a set of properties that can be efficiently proven using a bit-level solver. In some embodiments, the set of properties that are used for verifying a bit-serial square-root circuit design does not include any terms that compute a square of a w-bit partial square-root.

    摘要翻译: 描述了用于正式验证比特串行分割电路设计或比特串行平方根电路设计的方法和装置。 一些实施例使用可以使用位级解算器有效验证的一组属性正式验证位串行分割电路设计。 在一些实施例中,用于验证比特串行分割电路设计的一组属性不包括将w比特部分乘以除数的任何项。 一些实施例使用可以使用位级解算器有效验证的一组属性正式验证位串行平方根电路设计。 在一些实施例中,用于验证比特串行平方根电路设计的一组属性不包括计算w位部分平方根的平方的任何项。

    Fabrication of porous glass bioscaffolds by sol-gel and polymer sponge methods
    10.
    发明授权
    Fabrication of porous glass bioscaffolds by sol-gel and polymer sponge methods 有权
    通过溶胶 - 凝胶和聚合物海绵方法制备多孔玻璃生物支架

    公开(公告)号:US09321675B2

    公开(公告)日:2016-04-26

    申请号:US13617293

    申请日:2012-09-14

    申请人: Himanshu Jain

    发明人: Himanshu Jain

    摘要: Provided herein are biocompatible scaffolds and methods of preparing such bioscaffolds. The methods provide a superior high surface area, interconnected nanomacroporous bioactive glass scaffold, by combining a sol-gel process and polymer sponge replication methods. The formation of a uniformly nanoporous and interconnected macroporous bioscaffold is demonstrated using a starting material comprising a 70 mol % SiO2—30 mol % CaO glass composition as an example. The bioscaffold includes a series of open, interconnected macropores with size from 300 to 600 μm, as desired for tissue ingrowth and vascularization. At the same time, coexisting nanopores provide high-specific surface area (>150 m2/g), which is needed for enhancing the structure's degradation rate. These bioscaffolds hold promise for applications in hard tissue engineering.

    摘要翻译: 本文提供了生物相容性支架和制备这种生物支架的方法。 该方法通过结合溶胶 - 凝胶法和聚合物海绵复制方法提供了优异的高表面积,相互连接的纳米生物活性玻璃支架。 作为实例,使用包含70mol%SiO 2 -30mol%CaO玻璃组合物的原料来证明均匀的纳米孔和互连的大孔生物支架的形成。 生物支架包括一系列开放,互连的大孔,尺寸为300至600μm,根据组织向内生长和血管形成所需。 同时,共存纳米孔可提供高比表面积(> 150 m2 / g),这是提高结构降解速率所需要的。 这些生物支架对于在硬组织工程中的应用具有希望。