摘要:
A honeycomb structure having a crystal phase composed of aluminum titanate and mullite, which is obtained by sintering a honeycomb molding made of a mixture comprising titania powder, alumina powder, silica powder and mullite powder, the mixture containing 1-10 parts by mass of silica powder and 5-30 parts by mass of mullite powder per the total amount (100 parts by mass) of the titania powder and the alumina powder, and the mullite powder containing 40-60% by mass of particles having particle sizes of 10-50 μm and 5-30% by mass of particles having particle sizes of 3 μm or less, and its production method.
摘要:
A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls comprising at least main crystals of aluminum titanate, in which MgO and SiO2 are dissolved to form a solid solution, and glass phases, the glass phases containing 40-80% by mass of SiO2 and 1-20% by mass of MgO, the average size of the glass phases being 30 μm or less in a cross section of the cell walls, and the area ratio of the glass phases to the total area of the main crystals of aluminum titanate and the glass phases being 2-12% in a cross section of the cell walls, and its production method.
摘要:
A method for producing an aluminum-titanate-based ceramic honeycomb structure comprising blending TiO2 source powder and Al2O3 source powder with a TiO2/Al2O3 molar ratio of 45/55 to 55/45, and a sintering aid and/or a molding aid to prepare a moldable material, extrusion-molding the moldable material, and drying and sintering the resultant extrudate, the TiO2 source powder having a particle size distribution (mass-based frequency distribution relative to [log(particle size)]), in which both the maximum frequency in a particle size range of 0.2-4 μm and the maximum frequency in a particle size range of 10-100 μm are larger than those in other ranges than the two particle size ranges.
摘要翻译:一种钛酸铝系陶瓷蜂窝结构体的制造方法,其特征在于,将TiO 2源粉末与TiO 2 / Al 2 O 3摩尔比为45/55〜55/45的Al 2 O 3源粉末和烧结助剂和/或模塑助剂 可模制材料,挤出成型可模制材料,以及干燥和烧结所得挤出物,TiO 2源粉末具有粒度分布(基于质量的频率分布相对于[log(粒度)]),其中最大 粒度范围为0.2-4μm的频率和10-100μm的粒径范围内的最大频率大于其他范围内的两个粒度范围。
摘要:
A honeycomb structure having crystal phases of aluminum titanate and mullite, which is obtained by sintering a honeycomb molding made of a mixture comprising titania powder, alumina powder, silica powder and mullite powder, the mixture containing 1-10 parts by mass of silica powder and 5-30 parts by mass of mullite powder per the total amount (100 parts by mass) of the titania powder and the alumina powder, and the mullite powder containing 40-60% by mass of particles having particle sizes of 10-50 gm and 5-30% by mass of particles having particle sizes of 3 gm or less, and its production method.
摘要:
A method for producing an aluminum-titanate-based ceramic honeycomb structure comprising blending TiO2 source powder and Al2O3 source powder with a TiO2/Al2O3 molar ratio of 45/55 to 55/45, and a sintering aid and/or a molding aid to prepare a moldable material, extrusion-molding the moldable material, and drying and sintering the resultant extrudate, the TiO2 source powder having a particle size distribution (mass-based frequency distribution relative to [log(particle size)]), in which both the maximum frequency in a particle size range of 0.2-4 μm and the maximum frequency in a particle size range of 10-100 μm are larger than those in other ranges than the two particle size ranges.
摘要翻译:一种钛酸铝系陶瓷蜂窝结构体的制造方法,其特征在于,将TiO 2源粉末与TiO 2 / Al 2 O 3摩尔比为45/55〜55/45的Al 2 O 3源粉末和烧结助剂和/或模塑助剂 可模制材料,挤出成型可模制材料,以及干燥和烧结所得挤出物,TiO 2源粉末具有粒度分布(基于质量的频率分布相对于[log(粒度)]),其中最大 粒度范围为0.2-4μm的频率和10-100μm的粒径范围内的最大频率大于其他范围内的两个粒度范围。
摘要:
A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls comprising at least main crystals of aluminum titanate, in which MgO and SiO2 are dissolved to form a solid solution, and glass phases, the glass phases containing 40-80% by mass of SiO2 and 1-20% by mass of MgO, the average size of the glass phases being 30 μm or less in a cross section of the cell walls, and the area ratio of the glass phases to the total area of the main crystals of aluminum titanate and the glass phases being 2-12% in a cross section of the cell walls, and its production method.
摘要:
A vinyl monomer is graft polymerized on an aromatic hydrocarbon-based polymer film substrate to introduce graft chains into the substrate and thereafter a functional monomer represented by the following formula and having sulfonic acid groups or functional groups capable of conversion to sulfonic acid groups is graft polymerized to introduce the sulfonic acid groups or the functional groups capable of conversion to sulfonic acid groups: where R is an aromatic ring or an aliphatic chain; X is (1) —OH, (2) —OLi, —ONa or —OK, (3) —F or —Cl, or (4) —OCnH2n+1 where n is an integer of 1 to 7. Since the graft chains obtained by graft polymerization of the vinyl monomer can also be utilized as scaffold polymers, the graft polymerizability of the functional monomer to the aromatic hydrocarbon-based polymer film substrate is sufficiently improved to enable the preparation of a polymer electrolyte membrane that excels not only in proton conductivity and mechanical strength but also in dimensional stability.
摘要:
Polymer ion-exchange membranes having outstanding electrical conductivity, water retention and oxidation resistance are produced by the steps of uniformly mixing an organic high-molecular weight resin with functional inorganics having the abilities to promote graft polymerization of polymerizable monomers, adsorb water and conduct protons, irradiating the resulting functional inorganics/polymer membrane to initiate graft polymerization or graft copolymerization of polymerizable monomers having functional groups, and then introducing sulfonic acid groups into the graft chains.
摘要:
A polymer film substrate is irradiated with ions to make a large number of nano-sized through-holes and the substrate may be further irradiated with ionizing radiation so that a functional monomer may be grafted or co-grafted onto a surface of the film and within the holes; in addition, sulfonic acid group(s) may be introduced into the graft chains to produce a polymer ion-exchange membrane that may have high oxidation resistance, dimensional stability, electrical conductivity and/or methanol resistance, as well as may have an ion-exchange capacity controlled over a wide range.
摘要:
An aromatic polymer film substrate, or a grafted aromatic polymer film substrate having a monomer introduced therein as graft chains is irradiated with ionizing radiation to impart a crosslinked structure. The aromatic polymer film substrate or the grafted aromatic polymer film substrate, provided with the crosslinked structure, is directly sulfonated to obtain a crosslinked aromatic polymer electrolyte membrane. The crosslinked aromatic polymer electrolyte membrane has low water uptake, high proton conductivity, low methanol permeability, high chemical stability, and excellent mechanical characteristics.