摘要:
A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls comprising at least main crystals of aluminum titanate, in which MgO and SiO2 are dissolved to form a solid solution, and glass phases, the glass phases containing 40-80% by mass of SiO2 and 1-20% by mass of MgO, the average size of the glass phases being 30 μm or less in a cross section of the cell walls, and the area ratio of the glass phases to the total area of the main crystals of aluminum titanate and the glass phases being 2-12% in a cross section of the cell walls, and its production method.
摘要:
A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls comprising at least main crystals of aluminum titanate, in which MgO and SiO2 are dissolved to form a solid solution, and glass phases, the glass phases containing 40-80% by mass of SiO2 and 1-20% by mass of MgO, the average size of the glass phases being 30 μm or less in a cross section of the cell walls, and the area ratio of the glass phases to the total area of the main crystals of aluminum titanate and the glass phases being 2-12% in a cross section of the cell walls, and its production method.
摘要:
A method for producing an aluminum-titanate-based ceramic honeycomb structure comprising blending TiO2 source powder and Al2O3 source powder with a TiO2/Al2O3 molar ratio of 45/55 to 55/45, and a sintering aid and/or a molding aid to prepare a moldable material, extrusion-molding the moldable material, and drying and sintering the resultant extrudate, the TiO2 source powder having a particle size distribution (mass-based frequency distribution relative to [log(particle size)]), in which both the maximum frequency in a particle size range of 0.2-4 μm and the maximum frequency in a particle size range of 10-100 μm are larger than those in other ranges than the two particle size ranges.
摘要翻译:一种钛酸铝系陶瓷蜂窝结构体的制造方法,其特征在于,将TiO 2源粉末与TiO 2 / Al 2 O 3摩尔比为45/55〜55/45的Al 2 O 3源粉末和烧结助剂和/或模塑助剂 可模制材料,挤出成型可模制材料,以及干燥和烧结所得挤出物,TiO 2源粉末具有粒度分布(基于质量的频率分布相对于[log(粒度)]),其中最大 粒度范围为0.2-4μm的频率和10-100μm的粒径范围内的最大频率大于其他范围内的两个粒度范围。
摘要:
A honeycomb structure having crystal phases of aluminum titanate and mullite, which is obtained by sintering a honeycomb molding made of a mixture comprising titania powder, alumina powder, silica powder and mullite powder, the mixture containing 1-10 parts by mass of silica powder and 5-30 parts by mass of mullite powder per the total amount (100 parts by mass) of the titania powder and the alumina powder, and the mullite powder containing 40-60% by mass of particles having particle sizes of 10-50 gm and 5-30% by mass of particles having particle sizes of 3 gm or less, and its production method.
摘要:
A method for producing an aluminum-titanate-based ceramic honeycomb structure comprising blending TiO2 source powder and Al2O3 source powder with a TiO2/Al2O3 molar ratio of 45/55 to 55/45, and a sintering aid and/or a molding aid to prepare a moldable material, extrusion-molding the moldable material, and drying and sintering the resultant extrudate, the TiO2 source powder having a particle size distribution (mass-based frequency distribution relative to [log(particle size)]), in which both the maximum frequency in a particle size range of 0.2-4 μm and the maximum frequency in a particle size range of 10-100 μm are larger than those in other ranges than the two particle size ranges.
摘要翻译:一种钛酸铝系陶瓷蜂窝结构体的制造方法,其特征在于,将TiO 2源粉末与TiO 2 / Al 2 O 3摩尔比为45/55〜55/45的Al 2 O 3源粉末和烧结助剂和/或模塑助剂 可模制材料,挤出成型可模制材料,以及干燥和烧结所得挤出物,TiO 2源粉末具有粒度分布(基于质量的频率分布相对于[log(粒度)]),其中最大 粒度范围为0.2-4μm的频率和10-100μm的粒径范围内的最大频率大于其他范围内的两个粒度范围。
摘要:
A honeycomb structure having a crystal phase composed of aluminum titanate and mullite, which is obtained by sintering a honeycomb molding made of a mixture comprising titania powder, alumina powder, silica powder and mullite powder, the mixture containing 1-10 parts by mass of silica powder and 5-30 parts by mass of mullite powder per the total amount (100 parts by mass) of the titania powder and the alumina powder, and the mullite powder containing 40-60% by mass of particles having particle sizes of 10-50 μm and 5-30% by mass of particles having particle sizes of 3 μm or less, and its production method.
摘要:
In a ceramic honeycomb structure having large numbers of flow paths partitioned by porous cell walls, the cell walls have a porosity of 55-75%, with an average pore diameter Da of 10-30 μm and a pore area ratio Sa of 10-30% on their surfaces, and the average length La of the pores at their openings and the average width Lb of the pores at depth La from the surfaces of the cell walls meet the condition of 1.1
摘要:
A ceramic honeycomb filter comprising pluralities of ceramic honeycomb structures each having large numbers of flow paths partitioned by cell walls, which are bonded in the direction of the flow paths, predetermined flow paths being sealed by plugs, plugs formed at one end of at least one honeycomb structure being bonded to at least part of plugs formed at one end of a honeycomb structure adjacent to the end of this honeycomb structure.
摘要:
A method for producing a honeycomb filter from a honeycomb structure having large numbers of flow paths partitioned by cell walls, comprising inserting a tubular member into each of the flow paths, and injecting a plugging material into each of the flow paths from the tubular member to form a plug in each of the flow paths at a position separate from the end surface of the honeycomb structure, the tubular member having an outer diameter that is 40-90% of the opening size of the flow path, the plugging material comprising at least a ceramic material having a maximum particle size that is 85% or less of the inner diameter of the tubular member, and an average particle size of 1 μm or more.
摘要:
A ceramic honeycomb filter comprising a ceramic honeycomb structure having porous partition walls defining a plurality of flow paths for flowing an exhaust gas through the porous partition walls to remove particulates from the exhaust gas, the predetermined flow paths among the flow paths being sealed at their ends, a catalyst being carried by the porous partition walls, the porous partition walls having a porosity of 60-75% and an average pore diameter of 15-25 &mgr;m when measured according to a mercury penetration method, and the maximum of a slope Sn of a cumulative pore volume curve of the porous partition walls relative to a pore diameter obtained at an n-th measurement point being 0.7 or more, the Sn being represented by the following formula (1): Sn=−(Vn−Vn−1)/[log Dn−log (Dn−1)] (1), wherein Dn is a pore diameter (&mgr;m) at an n-th measurement point, Dn−1 is a pore diameter (&mgr;m) at an (n−1)-th measurement point, Vn is a cumulative pore volume (cm3/g) at an n-th measurement point, and Vn−1 is a cumulative pore volume (cm3/g) at an (n−1)-th measurement point.