摘要:
At least one single crystal substrate, each having a backside surface and made of silicon carbide, and a supporting portion having a main surface and made of silicon carbide, are prepared. In this preparing step, at least one of the backside surface and main surface is formed by machining. By this forming step, a surface layer having distortion in the crystal structure is formed on at least one of the backside surface and main surface. The surface layer is removed at least partially. Following this removing step, the backside surface and main surface are connected to each other.
摘要:
A method of manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate formed of silicon carbide and a SiC substrate formed of single crystal silicon carbide; fabricating a stacked substrate by stacking the base substrate and the SiC substrate to have their main surfaces in contact with each other; heating the stacked substrate to join the base substrate and the SiC substrate and thereby fabricating a joined substrate; and heating the joined substrate such that a temperature difference is formed between the base substrate and the SiC substrate, and thereby discharging voids formed at the step of fabricating the joined substrate at an interface between the base substrate and the SiC substrate to the outside.
摘要:
A silicon carbide substrate, which achieves restrained warpage even when a different-type material layer made of a material other than silicon carbide, includes: a base layer made of silicon carbide; and a plurality of SiC layers arranged side by side on the base layer when viewed in a planar view and each made of single-crystal silicon carbide. A gap is formed between end surfaces of adjacent SiC layers.
摘要:
A method for manufacturing a silicon carbide substrate achieves reduced manufacturing cost. The method includes the steps of: preparing a base substrate and a SiC substrate; fabricating a stacked substrate by stacking the base substrate and the SiC substrate; fabricating a connected substrate by heating the stacked substrate; transferring a void, formed at a connection interface, in a thickness direction of the connected substrate by heating the connected substrate to cause the base substrate to have a temperature higher than that of the SiC substrate; and removing the void by removing a region including a main surface of the base substrate opposite to the SiC substrate.
摘要:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide and a SiC substrate made of single-crystal silicon carbide; fabricating a stacked substrate by placing said SiC substrate on and in contact with a main surface of said base substrate; and connecting said base substrate and said SiC substrate to each other by heating said stacked substrate in a container to fall within a range of temperature equal to or greater than a sublimation temperature of silicon carbide constituting said base substrate. In the step of connecting said base substrate and said SiC substrate, a silicon carbide body made of silicon carbide and different from said base substrate and said SiC substrate is disposed in said container.
摘要:
An SiC ingot includes a bottom face having 4 sides; four side faces extending from the bottom face in a direction intersecting the direction of the bottom face; and a growth face connected with the side faces located at a side opposite to the bottom face. At least one of the bottom face, the side faces, and the growth face is the {0001} plane, {1-100} plane, {11-20} plane, or a plane having an inclination within 10° relative to these planes.
摘要:
A supporting portion (30c) made of silicon carbide has irregularities at at least a portion of a main surface (FO). The supporting portion (30c) and at least one single crystal substrate (11) made of silicon carbide are stacked such that the backside surface (B1) of each at least one single crystal substrate (11) and the main surface (FO) of the supporting portion (30c) having irregularities formed contact each other. In order to connect the backside surface (B1) of each at least one single crystal substrate (11) to the supporting portion (30c), the supporting portion (30c) and at least one single crystal substrate (11) are heated such that the temperature of the supporting portion (30c) exceeds the sublimation temperature of silicon carbide, and the temperature of each at least one single crystal substrate (11) is below the temperature of the supporting portion (30c).
摘要:
A method for manufacturing a silicon carbide substrate includes the steps of: preparing a SiC substrate made of single-crystal silicon carbide; disposing a base substrate in a crucible so as to face a main surface of the SiC substrate; and forming a base layer made of silicon carbide in contact with the main surface of the SiC substrate, by heating the base substrate in the crucible to fall within a range of temperature higher than a sublimation temperature of silicon carbide constituting the base substrate. In the step of forming the base layer, a gas containing silicon is introduced into the crucible.
摘要:
At least one single crystal substrate, each having a backside surface and made of silicon carbide, and a supporting portion having a main surface and made of silicon carbide, are prepared. In this preparing step, at least one of the backside surface and main surface is formed by machining. By this forming step, a surface layer having distortion in the crystal structure is formed on at least one of the backside surface and main surface. The surface layer is removed at least partially. Following this removing step, the backside surface and main surface are connected to each other.
摘要:
A step of preparing a stack is performed to position each single-crystal substrate in a first single-crystal substrate group and a first base substrate face to face with each other, position each single-crystal substrate in a second single-crystal substrate group and a second base substrate face to face with each other, and stack the first single-crystal substrate group, the first base substrate, an insertion portion, the second single-crystal substrate group, and the second base substrate in one direction in this order. Next, the stack is heated so as to allow a temperature of the stack to reach a temperature at which silicon carbide can sublime and so as to form a temperature gradient in the stack with the temperature thereof getting increased in the above-described direction. In this way, silicon carbide substrates can be manufactured efficiently.