摘要:
A depositing apparatus includes a profile-following mechanism having a translational displacement mechanism portion and a rotation mechanism portion adapted to allow a head to be swung in the directions of both X and the Y axes so that the head follows a profile of the surface of workpiece smoothly around a first contact point, thereof with the workpiece, serving as a fulcrum point.
摘要:
The present invention provides, in a γ′ phase precipitation strengthening type Ni-base alloy, an alloy excellent in heat treatment capability and weldability and suitable for joint with a ferritic steel. Further, the present invention provides a welded turbine rotor having the strength, ductility, and toughness simultaneously over the whole welded structure when a precipitation strengthening type Ni-base alloy having a heatproof temperature of 675° C. or higher is joined to a ferritic steel.A Ni-base alloy according to the present invention contains cobalt, chromium, aluminum, carbon, boron, and at least either tungsten or molybdenum with the remainder being nickel and inevitable impurities, having an alloy composition including 12 to 25 percent by mass of Co, 10 to 18 percent by mass of Cr, 2.0 to 3.6 percent by mass of Al, 0.01 to 0.15 percent by mass of C, 0.001 to 0.03 percent by mass of B, the total amount of tungsten and molybdenum being 5.0 to 10 percent by mass.A welded turbine rotor is structured by joining or building up by welding a second Ni-base alloy to a first Ni-base alloy that a γ′ phase solid solution temperature thereof is 900° C. or higher and a creep fracture strength at 675° C. is 100 MPa or more, and further welding a ferritic steel to the second Ni-base alloy. The second Ni-base alloy is a γ′ phase (Ni3Al) precipitation strengthening type Ni-base alloy, a γ′ phase solid solution temperature thereof is 850° C. or lower.
摘要:
A nickel base alloy includes: by mass, 0.001 to 0.1% of carbon; 12 to 23% of chromium; 15 to 25% of cobalt; 3.5 to 5.0% of aluminum; 4 to 12% of molybdenum; 0.1 to 7.0% of tungsten; and a total amount of Ti, Ta and Nb being not more than 0.5%. A parameter Ps represented by a formula (1) shown below is 0.6 to 1.6, Ps=−7×[C]−0.1×[Mo]+0.5×[Al] (1) where [C] indicates an amount of carbon; [Mo] indicates an amount of molybdenum; and [Al] indicates an amount of aluminum, by mass percent.
摘要:
An Ni—Fe based superalloy forging material including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.2 wt % of Nb, 0.05 wt % or less of C and the remainder of Ni and inevitable impurities is solution-treated and aged, and thereby γ′ phase (Ni3Al) having an initial mean particle size of about 50 to about 100 nm is precipitated. This superalloy is excellent in high-temperature strength and high-temperature ductility and can produce a large forged product of 10 ton or more. Therefore, this material is suitable for use as the material of a steam turbine rotor having a main steam temperature of 650° C. or more.
摘要:
Disclosed is a low-thermal-expansion Ni-based super-heat-resistant alloy for a boiler, which has excellent high-temperature strength. The alloy can be welded without the need of carrying out any aging treatment. The alloy has a Vickers hardness value of 240 or less. The alloy comprises (by mass) C in an amount of 0.2% or less, Si in an amount of 0.5% or less, Mn in an amount of 0.5% or less, Cr in an amount of 10 to 24%, one or both of Mo and W in such an amount satisfying the following formula: Mo+0.5 W=5 to 17%, Al in an amount of 0.5 to 2.0%, Ti in an amount of 1.0 to 3.0%, Fe in an amount of 10% or less, and one or both of B and Zr in an amount of 0.02% or less (excluding 0%) for B and in an amount of 0.2% or less (excluding 0%) for Zr, with the remainder being 48 to 78% of Ni and unavoidable impurities.
摘要:
A Ni—Fe based super alloy having high strength and toughness at high temperatures even when used in high-temperature environments, and a process of producing the super alloy. A turbine disk using the super alloy, a process of producing the turbine disk, a turbine spacer using the super alloy, and a process of producing the turbine spacer, as well as a gas turbine are also provided. The Ni—Fe based super alloy contains not more than 0.03% by weight of C, 14-18% of Cr, 15-45% of Fe, 0.5-2.0% of Al, not more than 0.05% of N, 0.5 to 2.0% of Ti, 1.5-5.0% of Nb, and Ni as a main ingredient.
摘要:
A metal sealing material used in a sealing device which can reduce a gap between a stator and a rotor of a turbine. The metal sealing material used in a sealing device for a stator and a rotor of a turbine includes a surface layer and a lower layer composed of a porous metal layer, wherein the porosity of the surface layer is smaller than the porosity of the lower layer; the porosity of the surface layer is 60 to 65% and the porosity of the lower layer is 67 to 75% or less; and the porous metal layer has a thickness of 0.3 to 3.0 mm and may include, as a main component, an MCrAlY alloy where M is either one of Ni and Co or both thereof, and h-BN as a solid lubricant.
摘要:
The present invention provides, in a γ′ phase precipitation strengthening type Ni-base alloy, an alloy excellent in heat treatment capability and weldability and suitable for joint with a ferritic steel. Further, the present invention provides a welded turbine rotor having the strength, ductility, and toughness simultaneously over the whole welded structure when a precipitation strengthening type Ni-base alloy having a heatproof temperature of 675° C. or higher is joined to a ferritic steel.A Ni-base alloy according to the present invention contains cobalt, chromium, aluminum, carbon, boron, and at least either tungsten or molybdenum with the remainder being nickel and inevitable impurities, having an alloy composition including 12 to 25 percent by mass of Co, 10 to 18 percent by mass of Cr, 2.0 to 3.6 percent by mass of Al, 0.01 to 0.15 percent by mass of C, 0.001 to 0.03 percent by mass of B, the total amount of tungsten and molybdenum being 5.0 to 10 percent by mass.A welded turbine rotor is structured by joining or building up by welding a second Ni-base alloy to a first Ni-base alloy that a γ′ phase solid solution temperature thereof is 900° C. or higher and a creep fracture strength at 675° C. is 100 MPa or more, and further welding a ferritic steel to the second Ni-base alloy. The second Ni-base alloy is a γ′ phase (Ni3Al) precipitation strengthening type Ni-base alloy, a γ′ phase solid solution temperature thereof is 850° C. or lower.
摘要:
An object of the present invention is to provide a turbine rotor with high reliability of strength. The turbine rotor includes two rotors which are connected at the butted portions of the rotors via a weld without forming penetration beads. Specifically, the turbine rotor includes a rotor for low pressure, a rotor for high pressure, and a center hole formed at a center portion of the turbine rotor. The rotors for low pressure and for high pressure are integrated together into a steam turbine rotor by welding respective ends of the rotors to each other. The respective ends of the rotors are in contact with each other via at least two contact faces in a radial direction and an axial direction of the turbine rotor. At least parts of the respective ends are welded together.
摘要:
A pipe for a steam turbine is formed of a centrifugal casting material to achieve resistance against higher temperatures and improve reliability of the pipe by employing, as a pipe material, a centrifugal casting material normalized to contain uniform and finer crystal grains. The centrifugal casting material is made of steel having a columnar structure in the radial direction with the crystal grain size number of 5 or more in a plane perpendicular to the radial direction. The steel includes 0.05-0.5% by mass C, not more than 1.0% Si, 0.05-1.5% Mn, 0.01-2.5% Ni, 8.0-13.0% Cr, 0.05-2.5% Mo, not more than 3.0% W, 0.05-0.35% V, 0.01-0.5% Nb, not more than 5% Co, 0.01-0.1% N, not more than 0.03% B, and not more than 0.05% Al.