摘要:
A dental treatment apparatus is provided with an irradiation unit, a temperature detection unit and a control unit. The irradiation unit is constituted by N number of first light emitting elements S1 to SN, N number of first focusing lenses L1 to LN, and N number of optic fibers F1 to FN, combined on a 1:1 basis, and optic fibers Fn are bundled on the output side of the irradiation unit. The first light emitting element Sn is an element which outputs laser light having a specific wavelength λ within a range of 400 nm to 420 nm. The temperature detection unit is constituted by a non-contact temperature sensor and a wire. The non-contact temperature sensor detects the temperature at a site irradiated with laser light output from an emergent end.
摘要翻译:牙科治疗装置设置有照射单元,温度检测单元和控制单元。 照射单元由N个第一发光元件S 1〜S N N构成,N个第一聚焦透镜L 1〜L〜L N 1,N个光纤F 1到F N 1,以1:1为单位组合,并且光纤F < n SUB>捆扎在照射单元的输出侧。 第一发光元件S N是将具有特定波长λ的激光输出在400nm至420nm的范围内的元件。 温度检测单元由非接触式温度传感器和电线构成。 非接触式温度传感器检测从紧急端射出的激光照射的部位的温度。
摘要:
The invention offers a technique that selectively differentiation-induces mesenchymal stem cells, which can differentiate to cells that constitute various tissues and organs, to osteoblasts. In addition, the invention offers a technique that differentiation-induces mesenchymal stem cells to osteoblasts with a simple operation that needs only short time and that is noninvasive. The inventors have found that the switch for the differentiation induction to osteoblasts is turned on by translocating biological clock-relevant factors existing in mesenchymal stem cells from the cells' cytoplasm to the cells' nucleus. The inventors have also found that the switch can be turned on by irradiating the cells for a short time with a lightwave having a specific wavelength that is noninvasive.
摘要:
The invention offers a technique that selectively differentiation-induces mesenchymal stem cells, which can differentiate to cells that constitute various tissues and organs, to osteoblasts. In addition, the invention offers a technique that differentiation-induces mesenchymal stem cells to osteoblasts with a simple operation that needs only short time and that is noninvasive. The inventors have found that the switch for the differentiation induction to osteoblasts is turned on by translocating biological clock-relevant factors existing in mesenchymal stem cells from the cells' cytoplasm to the cells' nucleus. The inventors have also found that the switch can be turned on by irradiating the cells for a short time with a lightwave having a specific wavelength that is noninvasive.
摘要:
A laser processing apparatus 1 includes a processing light source 3 emitting processing light; an observation light emitting unit 4 emitting observation light; optical fibers 19 conducting light having a plurality of wavelengths generated at an electronic component 2; a detecting unit 5 detecting the light conducted by the optical fibers 19; and a control unit 31 controlling a light emitting state of the processing light emitting unit 3. The optical fibers 19 are categorized into four groups, and disposed so as to surround an optical fiber 18 conducting the processing light. The optical fibers 19 categorized into the four groups are capable of conducting the observation light to the electronic component 2 every group.
摘要:
A laser processing apparatus 1 includes a processing light source 3 emitting processing light; an observation light emitting unit 4 emitting observation light; optical fibers 19 conducting light having a plurality of wavelengths generated at an electronic component 2; a detecting unit 5 detecting the light conducted by the optical fibers 19; and a control unit 31 controlling a light emitting state of the processing light emitting unit 3. The optical fibers 19 are categorized into four groups, and disposed so as to surround an optical fiber 18 conducting the processing light. The optical fibers 19 categorized into the four groups are capable of conducting the observation light to the electronic component 2 every group.
摘要:
A laser processing apparatus 1 includes: a processing light source 2 for emitting a processing light for processing a tooth 13A or a gingiva 13B; a halogen lamp 3 for emitting an illumination light for illuminating the tooth 13A or the gingiva 13B; a detector 4 capable of detecting a multiple-wavelength light from the tooth 13A or the gingiva 13B; and a controller 5 for controlling the light-emitting state of the first light-emitting part 2. The detector 4 has a first detection element 6 and a second detection element 7 with light-receiving sensitivities that differ in accordance with wavelength, detects light intensities of different wavelengths, and outputs the detection result to the controller 5. The controller 5 controls the light-emitting state of the processing light source 2 on the basis of the ratio of the respective intensities of the different wavelength light detected by the detector 4.
摘要:
A metal heating apparatus according to an embodiment of the present invention comprises a light output portion for outputting light having a center wavelength in a wavelength range of 200 nm to 600 nm.
摘要:
A metal heating apparatus according to an embodiment of the present invention comprises a light output portion for outputting light having a center wavelength in a wavelength range of 200 nm to 600 nm.
摘要:
A mobile terminal displays a screen image provided by an image data which is produced. An in-vehicle apparatus is fixed to a vehicle or is mounted on the vehicle to be portable. The mobile terminal sends the image data to the in-vehicle apparatus through communication such that a vehicle display portion of the in-vehicle apparatus displays a screen image provided by the image data. In a case where a communication between the in-vehicle apparatus and the mobile terminal is established, when one of the mobile terminal or the in-vehicle apparatus, in which an input operation has been performed prior to the other of the mobile terminal or the in-vehicle apparatus, is in operation, only the one of the mobile terminal or the in-vehicle apparatus is operable.
摘要:
An array antenna apparatus in which an SN ratio is improved. Antenna elements having transmission modules, respectively, are arranged in plurality, wherein the plurality of transmission modules respectively have transmission signal generators that each output a transmission intermediate frequency signal, local oscillation signal generators that each output a local oscillation signal, and transmission mixers that each mix the transmission intermediate frequency signal and the local oscillation signal with each other, thereby to carry out frequency conversion to a transmission high frequency signal. A reference signal source inputs a reference signal to the transmission signal generators and the local oscillation signal generators. The transmission intermediate frequency signal and the local oscillation signal are synchronized with each other by the reference signal.