摘要:
A method for forming a hemispherical silicon grain (HSG) layer on a polysilicon electrode is provided. The method is suitable for a substrate, which has a dielectric layer over the substrate with an opening to expose the substrate, and a polysilicon layer is formed over the substrate. A portion of the polysilicon layer is removed above dielectric layer other than the opening region. Each sidewall of the polysilicon layer is slanted so that a trapezoidal polysilicon base is formed. A buffer layer is formed over the trapezoidal polysilicon base. An ion implantation process is performed to form an amorphous silicon layer with sufficient depth on a top surface region of the trapezoidal polysilicon base. The buffer layer includes silicon oxide or silicon nitride. During ion implantation, oxygen or nitrogen elements can also be bombarded into the amorphous silicon layer so as to buffer the amorphous silicon layer to be re-crystallized. A selective HSG layer is formed on the trapezoidal polysilicon electrode base.
摘要:
A method for forming a semiconductor dielectric layer comprising the steps of providing a substrate having a plurality of semiconductor devices already formed thereon, and then forming a first dielectric layer over the substrate. Next, a silicon oxy-nitride layer is formed over the first dielectric layer, and finally a second dielectric layer is formed over the silicon oxy-nitride layer.
摘要:
A process of fabricating a bottom electrode for the storage capacitors of DRAM is disclosed. The process includes first forming an insulation layer on the surface of the device substrate, with the insulation layer patterned to form a contact opening that exposes a source/drain region of the memory cell transistor. A first conductive layer then covers the insulation layer and fills into the contact opening, with the first conductive layer contacting the exposed source/drain region. A native oxide layer is then formed on the surface of the first conductive layer. A second electrically conductive layer is then formed and patterned to form a recess substantially above the location of the contact opening in the insulation layer. A layer of HSG—Si then covers the surface of the second conductive layer and the surface of the recess, and the HSG—Si layer and the second conductive layer are patterned to form the bottom electrode of the capacitor. The recess and its covering HSG—Si layer increase the effective surface area of the bottom electrode of the capacitor.
摘要:
A method for depositing an oxide layer after spacer formation is disclosed. Owing to an oxide layer after spacer formation, therefore substantially increasing the effective thickness of spacer of the peripheral circuit. The method includes which includes a substrate on which an interior and a peripheral circuit are defined, wherein there is a gate oxide layer formed on the substrate. Sequentially an interior gate and a peripheral gate are formed. Then, N-type ions are implanted into the substrate of the interior and peripheral circuit. Consequently, conformal a second dielectric layer and a third dielectric layer are deposited above the substrate, interior gate, and peripheral gate, wherein second dielectric layer is etched to form a spacer of the interior gate and the peripheral gate. And then N.sup.+ -type ions are implanted into the substrate to form source/drain by using the peripheral gate, the spacer and a portion of the third dielectric layer that runs along the spacer as a mask. Subsequently, a blanket inter-plasma dielectric is deposited above the substrate. Finally, inter-polysilicon dielectric of the interior and peripheral circuit is etched anisotropically to form a plurality of contacts.
摘要:
A method of manufacturing an alignment mark. A substrate having a device region and an alignment mark region is provided. The device region is higher than the alignment mark region. The device region comprises an active region. An isolation structure is formed in the substrate at the edge of the alignment mark region and a first dielectric layer is formed over a portion of the substrate at the alignment mark region, simultaneously. A conductive layer is formed over the substrate. A portion of the conductive layer is removed to expose the first dielectric layer at the alignment mark region. The remaining conductive layer is patterned to form a component at the active region. A second dielectric layer with a smooth surface is formed over the substrate to cover the component. A wire is formed on the second dielectric layer, wherein a distance between the wire and the alignment mark region is larger than a distance between the component and the alignment mark region.
摘要:
The semiconductor wafer includes a substrate, a gate positioned on the substrate, a cap layer positioned on top of the gate, and a silicon oxide spacer positioned around both the gate and the cap layer. Firstly, a dielectric layer is formed on the semiconductor wafer to cover the gate. An etching back process is then performed to remove portions of both the dielectric layer and the silicon oxide spacer. Finally, a silicon nitride spacer is formed on the dielectric layer around the cap layer. The silicon nitride spacer is positioned on the surface of the dielectric layer and functions in reducing stress between the silicon nitride spacer and the substrate.
摘要:
A method for fabricating a double-cylinder capacitor is provided. The double-cylinder capacitor has a storage electrode having dual, concentric cylinder structures. The dielectric layer and the top electrode are formed in sequence over the bottom electrode. The storage area is thus enlarged by the double-cylinder capacitor of the invention. Thus, the capacitance of the capacitor can be effectively increased.
摘要:
A method of forming small dimension wires by an isotropic removal process. The method provides a substrate with an insulation layer. A first conductive layer and a second conductive layer are formed on the insulation layer. A wire pattern is formed on a photoresist layer after the coating process and the sequential exposure and development process. Part of the second conductive layer is removed by using the wire pattern on the photoresist layer as a mask, and thus part of the second conductive layer with wires is remained. Isotropic etching the peripheral part of the second conductive layer and thus the part of wire pattern with a smaller dimension is remained. Using the wire pattern with a smaller dimension as a mask to anisotropic etch the first conductive layer until the surface of the insulation layer is exposed, and thus the process of fabricating small dimension is finished.
摘要:
A method of fabricating a node contact window. A substrate having devices and a first dielectric layer is provided. Bit lines having spacer are formed on the first dielectric layer and a second is formed on the first dielectric layer. A hard material layer is then formed on the second dielectric layer. An opening is formed within the second dielectric layer to expose the spacer and the first dielectric layer. A polysilicon spacer is then formed on the sidewalls of the opening. A node contact window is formed by etching through the first dielectric layer to expose the substrate.
摘要:
A method for fabricating a type of bit line is able to form a small-sized bit line. In this method a first dielectric layer, a first conductive layer, and a second conductive layer are formed on a substrate in sequence. The first dielectric layer is exposed, then a second conducting wire and a first conducting wire are formed, respectively. A portion of the second conducting wire is removed by a cleaning liquid, so that the feature size of the second conducting wire is less than the feature size of the first conducting wire. An oxide layer is formed on the second conducting wire and the first conducting wire by performing a thermal treatment. The feature size of the second conducting wire is approximately equal to the feature size of the first conducting wire.