摘要:
A device for coupling a housing arrangement of a clutch device, particularly a hydrodynamic clutch device, to a rotor arrangement of an electric machine, wherein the rotor arrangement can be connected to a drive shaft so as to be fixed with respect to rotation relative to it, this drive shaft being rotatable around an axis of rotation. The electric machine further has a stator arrangement which can be brought into electromagnetic interaction with the rotor arrangement and the drive shaft can be driven in rotation by the electric machine and/or electrical energy can be generated by rotation of the drive shaft. First teeth provided at the rotor arrangement and second teeth provided at the housing arrangement are in a rotational driving engagement with one another or can be brought into a rotational driving engagement with one another, and an axial securing arrangement holds the rotor arrangement in axial direction with respect to the housing arrangement. The axial securing arrangement includes at least one catch member with at least one radially resilient catch projection at a structural component of one of the rotor arrangement and housing arrangement and has a catch recess associated with each catch projection at a structural component of the other of the rotor arrangement and housing arrangement.
摘要:
A rotational vibration damper includes a primary side (32) and a secondary side (46) which is rotatable with respect to the primary side (32) around an axis of rotation (A) against the action of a damper element arrangement (28). At least one damper element unit (42) of the first group (70) and at least one damper element unit (42′) of the second group (70′) are pre-loaded, and the primary side (32) and the secondary side (46) are pre-loaded in a basic relative rotation position with respect to one another. Proceeding from the basic relative rotation position of the primary side (32) with respect to the secondary side (46), a pre-loading path (V, V′) of at least one pre-loaded damper element unit (42) is shorter than a maximum relative rotation path of the primary side (32) with respect to the secondary side (46).
摘要:
A torsional vibration damper for a bridging clutch of a hydrodynamic clutch arrangement has a drive-side damping device, which can be brought into working connection with the housing of the clutch arrangement and is provided with a drive-side transmission element, which acts via a drive-side energy-storage group on an intermediate transmission element, and a takeoff-side damping device, which uses a takeoff-side group of energy-storage devices to establish a working connection between the intermediate transmission element and a takeoff-side transmission element, which is connected to a takeoff-side component of the hydrodynamic clutch arrangement. A predetermined stiffness ratio is obtained between the energy-storage devices of a first group and the energy-storage devices of a second group, and the energy-storage devices of the drive-side group have a stiffness different from that of the assigned energy-storage devices of the takeoff-side group.
摘要:
A torsional vibration damper, especially for transmission of torque in a hydrodynamic torque converter, includes a primary side, a secondary side, and a plurality of damper spring arrangements arranged between the primary side and the secondary side such that the primary side is rotatable relative to the secondary side against an urgency of the damper spring arrangement. Each damper spring arrangement has at least one spring and is supported in each circumferential end area at a supporting area of the secondary side and at a first and a second supporting area of the primary side which are arranged on both axial sides of the associated supporting area of the secondary side. The primary side has a substantially annular carrier part and at least one of the first and second supporting areas of the primary side are constructed as separate parts that are connected for rotation with the primary side.
摘要:
A torsional vibration damper has a damper mass carrier at which is received at least one damper mass movable relative to the damper mass carrier and with at least one stop. The at least one damper mass has a stop side with a geometric shaping. At least one stop is associated with the damper mass, and has an axial overlap with the at least one damper mass in extension direction of a central axis and a stop profile at its side facing the stop side of the damper mass. At least one stop receiver is associated with the least one stop for the at least one damper mass. The geometric shaping which is provided at the at least one damper mass has a first contact region operative at least substantially in radial direction and a second contact region operative at least substantially in tangential direction. The first contact region can be brought into operative connection with the stop, and the second contact region can be brought into operative connection with the stop receiver.
摘要:
A torsional vibration damper has a damper mass carrier at which is received at least one damper mass movable relative to the damper mass carrier and with at least one stop. The at least one damper mass has a stop side with a geometric shaping. At least one stop is associated with the damper mass, and has an axial overlap with the at least one damper mass in extension direction of a central axis and a stop profile at its side facing the stop side of the damper mass. At least one stop receiver is associated with the least one stop for the at least one damper mass. The geometric shaping which is provided at the at least one damper mass has a first contact region operative at least substantially in radial direction and a second contact region operative at least substantially in tangential direction. The first contact region can be brought into operative connection with the stop, and the second contact region can be brought into operative connection with the stop receiver.
摘要:
A torsional vibration damper on the bridging clutch of a hydrodynamic clutch arrangement has a first connecting device, which can be brought into working connection with the clutch housing and with a drive-side transmission element. The drive-side transmission element is connected via first energy-storage devices to an intermediate transmission element. The torsional vibration damper also has a second connecting device for establishing a working connection via second energy-storage devices between the intermediate transmission element and a takeoff-side transmission element, which is connected to a takeoff-side component of the hydrodynamic clutch arrangement. The intermediate transmission element accepts a mass element, located operatively between the two connecting devices.
摘要:
A torsional vibration damper for incorporation into the torque transmission path between two components or subassemblies, especially for a hydrodynamic coupling device, includes at least two disk-like damper members. Each damper member has a radially outward coupling region and a radially inward coupling region, and at least one deformation region extending between the radially outward coupling region and the radially inward coupling region. Each deformation region is elastically deformable at least in some areas to permit a relative circumferential movement between the radially outward coupling region and the radially inward coupling region.
摘要:
A torsional vibration damper for a lockup clutch of a hydrodynamic clutch device has a drive-side damper element which is in an operative connection with a turbine shell and a driven-side damper element which is connected with the drive-side damper element via a damping device having at least one energy accumulator acting in the circumferential direction and is in a working connection with a turbine hub. The drive-side damper element is constructed as a planetary carrier for at least one gear unit element of a planetary gear set, while the driven-side damper element acts as another gear unit element of the planetary gear set.
摘要:
A device for coupling a housing arrangement (38) of a clutch device, particularly a hydrodynamic clutch device (14), to a rotor arrangement (24) of an electric machine (12), wherein the rotor arrangement (24) of the electric machine (12) is coupled, or is to be coupled, to a drive shaft (30) so as to be fixed with respect to rotation relative to it, this drive shaft (30) being rotatable around an axis of rotation A), wherein the electric machine (12) further has a stator arrangement (16) which can be brought into electromagnetic interaction with the rotor arrangement (24) and the drive shaft (30) can be driven in rotation by the electric machine (12) and/or electrical energy can be generated by rotation of the drive shaft (30), wherein the device comprises toothing configurations (80, 76) at the rotor arrangement (24) and at the housing arrangement (38) which are in a rotational driving engagement with one another or can be brought into a rotational driving engagement with one another, further comprising an axial securing arrangement (84, 86) for holding the rotor arrangement (24) in axial direction with respect to the housing arrangement (38), is characterized in that the axial securing arrangement (84, 86) comprises at least one catch member (84) at a structural component of the rotor arrangement (24) and housing arrangement (38) and has a catch receptacle (86) associated with this catch member (84) at the other structural component of the rotor arrangement (24) and housing arrangement (38).