Abstract:
A microscopy system includes a gas cluster beam system configured for generating a beam of gas clusters directed toward a sample to irradiate a sample and mill away successive surface layers from the sample, a scanning electron microscope system configured for irradiating the successive surface layers of the sample with an electron beam and for imaging the successive surface layers of the sample in response to the irradiation of the surface layer, and a processor configured for generating a three dimensional image of the sample based on the imaging of the successive layers of the sample.
Abstract:
A method includes sequentially acquiring phase-shifted images of an optical source in a plurality of predetermined positions in the z plane to form a plurality of image frame sequences; determining from the plurality of image frame sequences at least one phase-related characteristic associated with each predetermined position of the optical source in the z plane; and storing the at least one phase-related characteristic and the predetermined positions of the optical source in the z plane.
Abstract:
In one embodiment, an apparatus comprises an optical system with multiple detectors and a processor. The optical system is configured to produce images of an optical source in a first dimension and a second dimension substantially orthogonal to the first dimension at each detector at a given time. Each image from the images is based on an interference of an emission from the optical source in a first direction and an emission from the optical source in a second direction different from the first direction. The processor is configured to calculate a position in a third dimension based on the images. The third dimension is substantially orthogonal to the first dimension and the second dimension.
Abstract:
A microscopy system includes a gas cluster beam system configured for generating a beam of gas clusters directed toward a sample to irradiate a sample and mill away successive surface layers from the sample, a scanning electron microscope system configured for irradiating the successive surface layers of the sample with an electron beam and for imaging the successive surface layers of the sample in response to the irradiation of the surface layer, and a processor configured for generating a three dimensional image of the sample based on the imaging of the successive layers of the sample.
Abstract:
A microscopy system for imaging a sample can include a scanning electron microscope system configured for imaging a surface layer of the sample and a focused ion beam system configured for generating an ion beam for milling the surface layer away from a sample after it has been imaged. A movable mechanical shutter can be configured to be moved automatically into a position between the sample and the scanning electron microscope system, so that when the electron beam is not imaging the sample the movable mechanical shutter is positioned between the sample and the scanning electron microscope system.
Abstract:
A microscopy system for imaging a sample can include a scanning electron microscope system configured for imaging a surface layer of the sample and a focused ion beam system configured for generating an ion beam for milling the surface layer away from a sample after it has been imaged. A movable mechanical shutter can be configured to be moved automatically into a position between the sample and the scanning electron microscope system, so that when the electron beam is not imaging the sample the movable mechanical shutter is positioned between the sample and the scanning electron microscope system.
Abstract:
A method includes sequentially acquiring phase-shifted images of an optical source in a plurality of predetermined positions in the z plane to form a plurality of image frame sequences; determining from the plurality of image frame sequences at least one phase-related characteristic associated with each predetermined position of the optical source in the z plane; and storing the at least one phase-related characteristic and the predetermined positions of the optical source in the z plane.
Abstract:
A microtome includes a blade located at an end of a trough that defines a cavity for holding a liquid; a sample block in which the at least one sample is suspended, the sample block is moveable relative to the blade such that when the sample block is passed across the blade a section is cut from the sample block; a plate that includes a support frame that defines an opening, and a transparent film extending across the opening, the transparent film being transparent to electrons, a grasper being configured to receive and retain the plate, wherein the grasper is moveable relative to the blade; and a pusher section that lacks the sample pusher section.
Abstract:
A microtome includes a blade located at an end of a trough that defines a cavity for holding a liquid; a sample block in which the at least one sample is suspended, the sample block is moveable relative to the blade such that when the sample block is passed across the blade a section is cut from the sample block; a plate that includes a support frame that defines an opening, and a transparent film extending across the opening, the transparent film being transparent to electrons, a grasper being configured to receive and retain the plate, wherein the grasper is moveable relative to the blade; and a pusher section that lacks the sample pusher section.