摘要:
A system for reading data in a memory cell includes three comparators, each of which has two inputs. A first reference cell having a low reference voltage is coupled to one input of the first comparator. A second reference cell having a high reference voltage is coupled to one input of the second comparator. A memory cell having a memory cell voltage is coupled to the other input of the first and second comparators. One input of the third comparator is coupled to the first comparator's output signal, which includes a difference voltage between the memory cell voltage and the low reference voltage. The other input of the third comparator is coupled to the second comparator's output signal, which includes a difference voltage between the memory cell voltage and the high reference voltage. A method and apparatus for reading data in a memory cell also are described.
摘要:
The present invention provides a dual reference cell sensing scheme for non-volatile memory. A high voltage reference cell and a low voltage reference cell are individually coupled to two sense amplifiers for providing two distinct reference voltages for comparison against the memory cell voltage. The output of the two sense amplifiers is further connected to a second stage sense amplifier to determine the status of the memory. The dual reference cell sensing scheme provides an increased sensing window which increases performance under low voltage application. The dual reference cell sensing scheme can be implemented by either voltage-based, current-based, or ground.
摘要:
A method for programming a memory, which includes multiple multi-level cells each having a left half cell and a right half cell, includes the following steps. First, a target address corresponding to 2n-group data to be stored is provided, wherein n is a positive integer. Next, the 2n-group data is sequentially programmed into the multi-level cells based upon the target address in a programming loop so that the data stored in the left half cells and the data stored in the right half cells are from different groups of the 2n-group data.
摘要:
A method for programming a memory, which includes multiple multi-level cells each having a left half cell and a right half cell, includes the following steps. First, a target address corresponding to 2n-group data to be stored is provided, wherein n is a positive integer. Next, the 2n-group data is sequentially programmed into the multi-level cells based upon the target address in a programming loop so that the data stored in the left half cells and the data stored in the right half cells are from different groups of the 2n-group data.
摘要:
A memory device includes a memory sector including a memory sector, a row of select transistors and a number of drivers. The memory sector includes a plurality of word lines each couples to a plurality of memory cells. The row of select transistors select the memory sector and separate the memory sector from an immediately adjacent memory sector in the memory device. Each of the number of drivers is coupled to one of the plurality of word lines. A first one of the drivers is coupled to a first one of the word lines to receive a first control signal to conduct the first word line and a voltage source, and a second one of the drivers is coupled to a second one of the word lines to receive a second control signal to disconnect the second word line from the voltage source.
摘要:
A method of programming a memory, wherein the memory includes many memory regions having multiple multi-level cells. Each memory region includes a first bit line, a second bit line, a data buffer and a protecting unit. The protecting unit, coupled to the first and second bit lines, and the data buffer, prevents a programming error from occurring. In an embodiment of the programming method, corresponding data are inputted to the data buffers respectively. The data corresponding to an nth phase are programmed into the targeted multi-level cells. Data corresponding to an (n+1)th phase is modified to make the data corresponding to the (n+1)th phase be the same as the data corresponding to the nth phase if the targeted multi-level cells pass a programming verification process according to an nth programming verification voltage. The above steps are repeated until n is equal to a maximum, n being a positive integer.
摘要:
A memory includes many memory regions each including a target memory cell, a source line, a bit line and a reading control circuit. The source line is coupled to a first terminal of the target memory cell. The bit line is coupled to a second terminal of the target memory cell. The reading control circuit is for selectively applying a working voltage to the source line.
摘要:
A clock synchronizing circuit applied in a SMD block is provided. The clock synchronizing circuit includes a number of stages of clock synchronizing units. The clock synchronizing circuit can achieve the purpose of clock synchronizing by using a novel circuit design of the forward delay unit, the mirror control unit or the backward delay unit in each stage of clock synchronizing unit or by using a short-pulse generation circuit to generate a short pulse for triggering out an output clock of each stage of forward delay unit.
摘要:
A method for accessing memory is provided. The memory includes many multi-level cells each having at least a storage capable of storing 2n bits, n is a positive integer. The method for accessing memory includes the following steps: Firstly, threshold voltages of the storage are defined into 2n level respectively, wherein each of the 2n level corresponds to a storage status of n bits, and most significant bits of the storage statuses which level 0 to level 2n/2−1 correspond to are different from most significant bits of the storage statuses which level 2n/2 to level 2n−1 correspond to. Next, a target data is divided into n portions and the divided target data is written into n temporary memories respectively. Then, n bits of the target data are written into the multi-level cell. Each of the n bits data is collected from each of the n temporary memories.
摘要:
A pre-code device includes firstly memory circuit, an address decoder, and an alternative logic circuit. The first memory circuit includes a number of memory blocks and at east a replacing block. The memory blocks are pointed by a number of respective physical addresses. The replacing block is pointed by a replacing address. The address decoder decodes an input address to provide a pre-code address. The alternative logic circuit looks up an address mapping table, which maps defect physical address among the physical addresses to the replacing address, to map the pre-code address to the replacing address when the pre-code address corresponds to the defect physical address. The alternative logic circuit correspondingly pre-codes the pre-code data to the replacing block.