摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within a ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; forming a first dielectric layer to cover the discrete compound monolayer; forming a second third monolayer above first dielectric layer; and forming a second discrete compound monolayer; and forming a second dielectric layer to cover the second discrete compound monolayer above the first dielectric layer. There is also provided a semiconductor device formed by the ALD method.
摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within the ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; and forming a second discrete compound monolayer above the semiconductor substrate by the same process as that for forming the first discrete compound monolayer. There is also provided a semiconductor device in which the charge trapping layer is a dielectric layer containing the first and second discrete compound monolayers formed by the ALD method.
摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within the ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; and forming a second discrete compound monolayer above the semiconductor substrate by the same process as that for forming the first discrete compound monolayer. There is also provided a semiconductor device in which the charge trapping layer is a dielectric layer containing the first and second discrete compound monolayers formed by the ALD method.
摘要:
Disclosed are atomic layer deposition method and a semiconductor device including the atomic layer, including the steps: placing a semiconductor substrate in an atomic layer deposition chamber; feeding a first precursor gas to the semiconductor substrate within the chamber to form a first discrete monolayer on the semiconductor substrate; feeding an inert purge gas to the semiconductor substrate within the chamber to remove the first precursor gas which has not formed the first discrete monolayer on the semiconductor substrate; feeding a second precursor gas to the chamber to react with the first precursor gas which has formed the first discrete monolayer, forming a discrete atomic size islands; and feeding an inert purge gas to the semiconductor substrate within the chamber to remove the second precursor gas which has not reacted with the first precursor gas and byproducts produced by the reaction between the first and the second precursor gases.
摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within a ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; forming a first dielectric layer to cover the discrete compound monolayer; forming a second third monolayer above first dielectric layer; and forming a second discrete compound monolayer; and forming a second dielectric layer to cover the second discrete compound monolayer above the first dielectric layer. There is also provided a semiconductor device formed by the ALD method.
摘要:
Disclosed are atomic layer deposition method and a semiconductor device including the atomic layer, including the steps: placing a semiconductor substrate in an atomic layer deposition chamber; feeding a first precursor gas to the semiconductor substrate within the chamber to form a first discrete monolayer on the semiconductor substrate; feeding an inert purge gas to the semiconductor substrate within the chamber to remove the first precursor gas which has not formed the first discrete monolayer on the semiconductor substrate; feeding a second precursor gas to the chamber to react with the first precursor gas which has formed the first discrete monolayer, forming a discrete atomic size islands; and feeding an inert purge gas to the semiconductor substrate within the chamber to remove the second precursor gas which has not reacted with the first precursor gas and byproducts produced by the reaction between the first and the second precursor gases.
摘要:
A semiconductor non-volatile memory (NVM) device, comprising: a semiconductor substrate; a three-layer stack structure of medium layer-charge trapping layer-medium layer disposed on the semiconductor substrate; a gate disposed above the three-layer stack structure; a source and a drain disposed in the semiconductor substrate at either side of the three-layer stack structure; wherein the charge trapping layer is a dielectric layer containing one or more discrete compound clusters formed by atomic layer deposition (ALD) method.
摘要:
Disclosed herein are various methods of forming FinFET semiconductor devices so as to tune the threshold voltage of such devices. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate to define at least one fin (or fins) for the device, prior to forming a gate structure above the fin (or fins), performing a first epitaxial growth process to grow a first semiconductor material on exposed portions of the fin (or fins) and forming the gate structure above the first semiconductor material on the fin (or fins).
摘要:
A logic switch intentionally utilizes GIDL current as its primary mechanism of operation. Voltages may be applied to a doped gate overlying and insulated from a pn junction. A first voltage initiates GIDL current, and the logic switch is bidirectionally conductive. A second voltage terminates GIDL current, but the logic switch is unidirectionally conductive. A third voltage renders the logic switch bidirectionally non-conductive. Circuits containing the logic switch are also described. These circuits include inverters, SRAM cells, voltage reference sources, and neuron logic switches. The logic switch is primarily implemented according to SOI protocols, but embodiments according to bulk protocols are described.
摘要:
A random access memory includes a plurality of memory cells arrayed in bit-lines and word-lines. Each memory cell comprises a green transistor (gFET) including a gate, a source, and a drain; a switching resistor including a first terminal and a second terminal; and a reference resistor including a third terminal and a fourth terminal. The first terminal of the switching resistor and the third terminal is connected to a bit-line, the second terminal of the switching resistor is connected to the first source of the gFET, the fourth terminal of the reference resistor is connected to the second source of the gFET, and the gate of the gFET is connected to a word-line. The method of operating the RRAM includes a write operation and a read operation The write operation comprises steps of: applying a first voltage to the bit-line to perform a large voltage difference across the bit-line and the drain of the gFET, applying a second voltage to the gate of the gFET to turn on the gFET transiently, and a large current pulse flowing through the switching resistor for changing the resistance state. The read operation comprises steps of: applying a third voltage to the bit-line to perform a small voltage difference across the bit-line and the drain of the gFET, applying a second voltage to the word-line to turn on the gFET, and comparing the current through the switching resistor with the current through the reference resistor so as to read the data stored in the memory cell.