摘要:
This invention provides a sputtering system providing large area sputtering and plasma-assisted reactive gas dissociation. A plurality of plasma sources is provided in a reaction chamber to dissociate at least one reactive gas. The dissociated reactive gas is doped in a film during the deposition of the film so as to control the composition of the film. The property of the film is thus improved. A composite film can be formed on the substrate by the present sputtering system. The present sputtering system is suitable for film deposition on a large-area hard substrate and flexible substrate.
摘要:
An operating method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof are provided. The present invention reduces the time needed for filling the manufacturing gas into the large volume manufacturing cavity. Therefore, the plasma enhanced atomic layer deposition apparatus can switch the precursors rapidly to increase the thin film deposition rate, reduce the manufacturing gas consumption and lower the manufacturing cost.
摘要:
An operating method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof are provided. The present invention reduces the time needed for filling the manufacturing gas into the large volume manufacturing cavity. Therefore, the plasma enhanced atomic layer deposition apparatus can switch the precursors rapidly to increase the thin film deposition rate, reduce the manufacturing gas consumption and lower the manufacturing cost.
摘要:
A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
摘要:
A thin film transistor (TFT) including a gate, a gate insulator, an oxide semiconductor channel layer, a source, and a drain is provided. The gate insulator covers the gate, while the oxide semiconductor channel layer is configured on the gate insulator and located above the gate. The oxide semiconductor channel layer includes a first sub-layer and a second sub-layer located on the first sub-layer. An oxygen content of the first sub-layer is lower than an oxygen content of the second sub-layer. The source and the drain are configured on a portion of the second sub-layer. In addition, a fabricating method of the above-mentioned TFT is also provided.
摘要:
A method for forming a silicon oxynitride layer, suitable to be used in the production of semiconductor devices, e.g. poly-silicon thin film transistors, is provided. A plasma surface treatment is performed over a substrate after a silicon nitride/silicon oxide layer has been formed on the substrate by a glow discharge system to transform the silicon nitride/silicon oxide layer into a silicon oxynitride layer. The semiconductor device may be completely manufactured in simplex equipment. Therefore, the production time and production cost are favorably reduced.
摘要:
A thin film transistor (TFT) including a gate, a gate insulator, an oxide semiconductor channel layer, a source, and a drain is provided. The gate insulator covers the gate, while the oxide semiconductor channel layer is configured on the gate insulator and located above the gate. The oxide semiconductor channel layer includes a first sub-layer and a second sub-layer located on the first sub-layer. An oxygen content of the first sub-layer is lower than an oxygen content of the second sub-layer. The source and the drain are configured on a portion of the second sub-layer. In addition, a fabricating method of the above-mentioned TFT is also provided.
摘要:
A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
摘要:
A pixel structure including a substrate, a gate, an insulation layer, a metal oxide semiconductor (MOS) layer, a source and a drain, at least one film layer, and a first electrode layer is provided. The gate is disposed on the substrate. The insulation layer covers the gate. The MOS layer is disposed on the insulation layer above the gate. The source and the drain are disposed on the MOS layer. The film layer covers the MOS layer and includes a transparent photocatalytic material, wherein the transparent photocatalytic material blocks ultraviolet light from reaching the MOS layer. The first electrode layer is electrically connected to the source or the drain.
摘要:
A method of fabricating a pixel structure is provided. A gate electrode is formed on a substrate, and a dielectric layer is formed on the gate electrode. A patterned metal oxide semiconductor layer and a patterned metallic etching stop layer are formed on the dielectric layer above the gate electrode. A first conductive layer is formed to cover the patterned metallic etching stop layer and the dielectric layer. The first conductive layer is patterned by using the patterned metallic etching stop layer as an etching stop layer to form a source and a drain. A second conductive layer is formed to cover the source, the drain and the dielectric layer. The second conductive layer is patterned by using the patterned metallic etching stop layer as an etching stop layer to form a first electrode layer. The patterned metallic etching stop layer exposed between the source and the drain is removed.