摘要:
Provided are a nanoparticle for detecting biomaterials and a biosensor by using the nanoparticle. The nanoparticle includes a metal nanostructure around which an electric field is induced by localized surface plasmon resonance when light is irradiated onto a surface of the metal nanostructure, a spacer covering the surface of the metal nanostructure, and capture molecules specifically reacting with fluorophore-labeled target molecules, and immobilized on a surface of the spacer.
摘要:
A method for measuring the size of microparticles includes: measuring an extinction spectrum of a medium having microparticles dispersed therein; and calculating average size of the microparticles based on the measured extinction spectrum and the Mie scattering theory.
摘要:
Provided is a blood plasma separator for separating blood plasma and blood cells from whole blood without an additional complicated structure by passing the whole blood through a micro channel having a predetermined shape to make the whole blood flow turbulently and cause a velocity difference or deflection between flows of the blood plasma and the blood cells of the whole blood, and a blood plasma separation method thereof. The blood plasma separator includes: a body; a micro channel formed in the body to allow blood to pass therethrough; a separation member formed at the micro channel to make flow of blood cells or blood plasma turbulent to separate the blood cells from the blood plasma; an inlet connected to the micro channel and configured to introduce blood into the micro channel; and an outlet connected to the micro channel and configured to discharge blood from the micro channel.
摘要:
Provided is a biochip and an apparatus for detecting a biomaterial. The biochip includes a metal thin film on the surface of a substrate, restraining autofluorescence of the substrate, and a spacer on the metal thin film, having capture molecules immobilized on the surface of the spacer and specifically bound to target molecules. The spacer has a thickness controlled to enhance the strength of a fluorescence signal emitted from a fluorophore labeled with the target molecules and immobilized on the spacer by the specific binding between the capture molecule and the target molecule.
摘要:
Provided is a method for manufacturing a floating structure of a MEMS. The method for manufacturing a floating structure of a microelectromechanical system (MEMS), comprising the steps of: a) forming a sacrificial layer including a thin layer pattern doped with impurities on a substrate; b) forming a support layer on the sacrificial layer; c) forming a structure to be floated on the support layer by using a subsequent process; d) forming an etch hole exposing both side portions of the thin layer pattern; and e) removing the sacrificial layer through the etch hole to form an air gap between the support layer and the substrate.
摘要:
Provided are a microfluidic device and a microfluidic network formed by connecting such microfluidic devices. The microfluidic device can equalize the flow of multiple microfluids in a chamber in parallel to thereby have an equal flow rate when the microfluids transferred through different flow channels join in the chamber having a changing cross-sectional area. The microfluidic device includes: multiple flow channels formed between an upper substrate and a lower substrate to transfer the microfluids and including inlets for injecting the microfluids in one side and fluid stopping surfaces for stopping the flow of the microfluids in the other side; a pressure controlling flow channel for removing a pressure difference between the microfluids; a fluid converging part for converging the microfluids; and a chamber composed of hydrophilic surfaces and hydrophobic surfaces disposed alternately in a flow direction so that the microfluids join and flow in parallel and equal.
摘要:
Provided are a micro gas sensor for measuring a gas concentration configured to achieve a high heating and cooling rate of a gas sensitive layer, achieve temperature uniformity, and achieve durability against thermal impact and mechanical impact; and a method for manufacturing the micro gas sensor. The micro gas sensor includes: a vacuum cavity disposed in a substrate; a support layer covering the vacuum cavity; a sealing layer sealing the support layer and the vacuum cavity; a micro heater disposed on the sealing layer; a plurality of electrodes disposed on the micro heater, insulated from the micro heater; and a gas sensitive layer covering the electrodes.
摘要:
Provided is an apparatus for enhancing light source intensity. The apparatus for enhancing light source intensity includes a light source outputting light having an ultrashort pulse width, a dielectric substrate, and metal nanostructures disposed on the dielectric substrate, wherein the metal nanostructures are combined with the light having an ultrashort pulse width on the dielectric substrate to generate a surface plasmon polariton resonance.
摘要:
There is provided a surface plasmon resonance imaging sensor capable of performing absolute calibration comprising: a transparent substrate; a first prism and a second prism formed at one surface of the substrate and symmetrically positioned with reference to the center axis of the substrate; an optical system for providing light to the first and second prisms; and a light receiving part for detecting the light reflected from the substrate, wherein a surface plasmon resonance (SPR) angle change of an object to be measured by the first prism is measured, and a refractive index change on each pixel of the object is obtained as a two-dimensional difference image by the second prism.